首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.

Abstract  

New phosphoramidates with formula 3-NC5H4C(O)NHP(O)XY (X=Y=Cl (1), X=Y=NH–C(CH3)3 (2a,2b), X=Y=N(C4H9)2 (3), X=Cl, Y=N(C2H5)2 (4) were synthesized and characterized by IR, 1H-, 13C-, 31P-NMR spectroscopy and CHN elemental analysis. Surprisingly, the reaction of compound 2a with LaCl3, 7H2O in 3:1 M ratio leads to a polymorph of this compound (2b). NMR spectra indicate that 2 J(PNHamide) in 2b (7.0 Hz) is very much greater than in 2a (4.1 Hz), while δ(31P) values are identical for both of them. In IR spectra, υ(P=O) is weaker but υ(C=O) is stronger in 2a than in 2b. The structures of 2a, 2b were determined by X-ray crystallography. These compounds form centrosymmetric dimers via two intermolecular P=O……H–N hydrogen bonds. Strong intermolecular N–H…N, N–H…O and weak C–H…O hydrogen bonds lead to a three-dimensional polymeric cluster in the 2a while intermolecular strong N–H……N and weak C–H……O hydrogen bonds form a two-dimensional polymeric chain in 2b.  相似文献   

2.
Three Co(II) and Ni(II) complexes, namely [Co(bpdc)(H2O)2] (1), [Ni(bpdc)(H2O)2] (2), and [Co2(bpdc)2(prz)0.5(H2O)3]·0.5H2O (3) (H2bpdc = 2,2′-bipyridine-6,6′-dicarboxylic acid and prz = piperazine), have been synthesized from H2bpdc and the corresponding metal salts under hydrothermal conditions. The complexes were characterized by physico-chemical and spectroscopic methods, as well as by X-ray crystallography. Compounds 1 and 2 both consist of neutral mononuclear molecules, of [Co(bpdc)(H2O)2] and [Ni(bpdc)(H2O)2], respectively. Compound 3 consists of a mononuclear molecule of [Co(bpdc)(H2O)2] and a binuclear molecule of [Co2(bpdc)2prz (H2O)2]. The discrete neutral complexes 13 further extend their structures into three-dimensional supramolecular architectures by intermolecular O–H⋯O and C–H⋯O hydrogen bonds as well as π–π stacking interactions. Magnetic susceptibility measurements show that complex 3 exhibits weak ferromagnetic interactions between the two Co(II) ions bridged by the prz ligand, with C = 5.41 cm3 mol−1 K and θ = +27.6 K, respectively.  相似文献   

3.
Abstract  A 1-D hybrid copper(I) halides, [(phen)Cu3I3] n (phen = 1,10-phenanthroline)(1) with novel D6R (double six-membered rings) Cu6I6 cores, was synthesized by solvothermal reaction and characterized by single-crystal X-ray diffraction. In 1, nitrogen atoms from phen replace two I of CuI4 tetrahedron to give distorted tetrahedral geometries (CuI2N2), then CuI2N2 tetrahedron shares corners via μ3-I to generate an extended 1-D zigzag chain. Two zigzag chains combines with one 1-D (Cu4I4) n chain containing D6R cores via μ3-I-Cu (from cores) bonds to form the infinite 1-D ribbonlike polymer along the a-axis. Furthermore, the title compound is stabilized by conspicuous C–H···I hydrogen bonds, π–π and d10–d10 metallic interactions. Experimental and theoretical optical property investigation indicates that 1 possesses semiconductor property. DFT calculation was executed to probe the electronic structure of 1. To our interest, phen act as a property control species with its π* electrons appear in the forbidden band. Graphical Abstract  A hybrid copper(I) halides [(phen)Cu3I3] n containing D6R cores was structurally determined, which was stabilized by conspicuous C–H···I hydrogen bonds, π–π and d10–d10 metallic interactions and possesses semiconductor property. DFT calculation indicate phen act as a property control species with its π* electrons appear in the forbidden band. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
C–H….π interactions are known to be important contributors to protein stability. In this study, we have analyzed the influence of C–H….π interactions in single chain “all-alpha” proteins. In the data set, a total of 181 C–H….π interactions were observed. The most prominent representatives are the interactions between aromatic C–H donor groups and aromatic π acceptors. Eighty-one percent of the C–H….π interactions between side chain to side chain and remaining19% of the C–H….π interactions were observed between side-chain to side-chain five-member aromatic ring. The donor atom contribution to C–H….π interactions was mainly from Phe, Tyr, and Trp residues. The acceptor atom contribution to C–H….π interactions was mainly from Phe, Tyr, Trp, and His. The highest percentage of C–H….π interactions were observed form Phe residue. The secondary structure preference analysis of all C–H….π interacting residues showed that Phe, Tyr, Trp, and His preferred to be in helix. Long-range C–H….π interactions are the predominant type of interactions in single chain all-alpha proteins data set. All the C–H….π interactions forming residues in the data set preferred to be in the buried region. Seventy-three percent of the donor residues and 65% of the acceptor residues are highly conserved.  相似文献   

5.
Two new salts, [BzTPP]2[Cu(mnt)2] (1) and [4NO2BzTPP]2[Cu(mnt)2] (2) (BzTPP+ = benzyltriphenylphosphonium and mnt2− = maleonitriledithiolate) have been prepared and characterized by elemental analyses, UV, IR, molar conductivity and single-crystal X-ray diffraction. The single-crystal structure analysis shows that 1 crystallizes in the monoclinic space group P21/n, while 2 crystallizes in the triclinic space group P−1. The effects of weak intramolecular interactions such as C–H···O, C–H···S, C–H···N, C–H···Cu hydrogen bonds and p···π, π···π stacking interactions in the solids generate a 3D network structure. It is noted that the change in the molecular topology of the counteraction when the 4-substituted group in the benzyl ring is changed from H to NO2 results in differences in the crystal system, space group, weak interactions and the stacking mode of the cations and anions of 1 and 2. The magnetic susceptibilities of these salts measured in the temperature range 2.0 to 300 K show weak ferromagnetic coupling features with θ = 2.05 × 10−2 K for 1 and 5.13 × 10−3 K for 2.  相似文献   

6.
Two new neodymium complexes, [Nd2(abglyH)6(2,2′-bipy)2(H2O)2] · 4H2O 1 and {[Nd(abglyH)3(H2O)2] · (4,4′-bipy) · 7H2O}n 2 (abglyH2 = N-P-acetamidobenzenesulfonyl-glycine acid, 2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), have been synthesized and their structures have been measured by X-ray crystallography. In 1, nine-coordinated Nd(III) ions are bridged by two synsyn bidentate and two tridentate bridging carboxylate groups from four different abglyH anions to form dinuclear motifs, which are further connected into a 3-D supramolecular framework via hydrogen bonds between the binuclear motifs and the uncoordinated water molecules. In 2, eight-coordinated Nd(III) ions are linked by six carboxylate groups adopting a synsyn bidentate bridging fashion to form a 1-D inorganic–organic alternating linear chain. These polymeric chains generate microchannels extending along the a direction, and these cavities are occupied by discrete tetradecameric water clusters, which interact with their surroundings and finally furnish the 3-D supramolecular network via hydrogen bonds. At the same time, π–π stacking interactions between benzene rings from abglyH anions also play an important role in stabilizing the network.  相似文献   

7.
Diacetylplatinum(II) complexes [Pt(COMe)2(N^N)] (N^N = bpy, 3a; 4,4′-t-Bu2-bpy, 3b) were found to undergo oxidative addition reactions with organyl halides. The reaction of 3a with methyl iodide and propargyl bromide led to the formation of the cis addition products (OC-6-34)-[Pt(COMe)2(R)X(bpy)] (R = Me, X = I, 4a; CH2C≡CH, X = Br, 4k). Analogous reactions of 3a with ethyl iodide, benzyl bromide, and substituted benzyl bromides, 3-(bromomethyl)pyridine, 2-(bromomethyl)thiophene, allyl bromide, and cyclohex-2-enyl bromide led to exclusive formation of the trans addition products (OC-6-43)-[Pt(COMe)2(R)X(bpy)] (X = I, R = Et, 4b; X = Br, R = CH2C6H5, 4c; CH2C6H4(o-Br), 4d; CH2C6H4(p-COOH), 4e; CH2-3-py (3-pyridylmethyl), 4f; CH2-2-tp (2-thiophenylmethyl), 4g; CH2CH=CH2, 4h; c-hex-2-enyl (cyclohex-2-enyl), 4i). All complexes 4 were characterized by microanalysis, 1H and 13C NMR and IR spectroscopy. Additionally, complexes 4a, 4f, and 4g were characterized by single-crystal X-ray diffraction analyses. Reactions of 3a and 3b with o-, m- and p-bis(bromomethyl)benzene, respectively, led to the formation of dinuclear platinum(IV) complexes [{Pt(COMe)2Br(N^N)}2-{μ-(CH2)2C6H4}] (5). These complexes were characterized by microanalysis, IR spectroscopy, and depending on their solubility by 1H and 13C NMR spectroscopy, too. A single-crystal X-ray diffraction analysis of complex [{Pt(COMe)2Br(bpy)}2{μ-m-(CH2)2C6H4}] (5b) confirmed its dinuclear composition. The solid-state structures of 4a, 4f, 4g, and 5b are discussed in terms of C–H···O and O–H···O hydrogen bonds as well as π–π stacking between aromatic rings.  相似文献   

8.
The thiosemicarbazide and hydrazide Cu(II) complexes, [Cu3L21(py)4Cl2] (1), [Cu(HL2)py] (2) and [Cu(HL3)py] (3), (H2L1 = 1-picolinoylthiosemicarbazide, H3L2 = N′-(2-hydroxybenzylidene)-3-hydroxy-2-naphthohydrazide, H3L3 = 2-hydroxy-N′-((2-hydroxy-naphthalen-1-yl)methylene)benzohydrazide) have been prepared and characterized through physicochemical and spectroscopic methods as well as X-ray crystallography. Complex 1 has a centrosymmetric structure with –N–N– bridged Cu3 skeleton. Neighboring molecules are linked into a 3D supermolecular framework by π–π stacking interactions, N–H···Cl and C–H···Cl hydrogen bonds. Complexes 2 and 3 have similar planar structures but different dimers formed by concomitant Cu···N and Cu···O interactions, respectively. Solvent accessible voids with a volume of 391 ?3 are included in the structure of complex 2, indicating that this complex is a potential host candidate. Thermogravimetric analysis shows that the three complexes are stable up to 100 °C.  相似文献   

9.
Two binuclear cadmium(II) iodide compounds of the types [Cd2(L1)(I)4] (1) and [(L2)Cd(μ-I)CdI3] (2) [L1 = N,N′-(bis(pyridine-2-yl)formylidene)triethylenetetramine and L2 = tris(2-aminoethyl)amine] are synthesized and characterized. X-ray structural study shows that each cadmium(II) in 1 has a distorted square pyramidal geometry with a CdN3I2 chromophore and that L1 behaves as a binucleating bis(tridentate) ligand bridging the metal centers with iodides remaining as terminals. In 2, one cadmium(II) adopts a distorted tetrahedral geometry with a CdI4 chromophore surrounded by four iodides, while the other has a distorted trigonal bipyramidal environment with CdN4I chromophore bound by four N atoms of L2 and one bridging iodide. Weak C–H···π interactions in 1 result in an infinite 1D chain; however, such weak non-covalent interactions are absent in 2. The Schiff base complex, 1, shows high-energy intraligand 1(π–π*) fluorescence in DMF solution at room temperature, whereas compound 2 containing tripodal amine is fluorescent-inactive.  相似文献   

10.
New mixed-ligand copper(I) complexes, [Cu(Phca2en)(PPh3)X], [Phca2en = N,N′-bis(β-phenylci-nnamaldehyde)-1,2-diiminoethane and X=Cl (1), Br (2), I (3), NCS (4), N3 (5)] have been synthesized and characterized by various techniques. 1H and 13C-NMR and IR spectral data of these copper(I) complexes are compared with the free ligand to elucidate some structural features. The structures of [Cu(Phca2en)(PPh3)Br] (2) and [Cu(Phca2en)(PPh3)I] (3) have been determined from single-crystal data showing that the coordination geometry around copper atom is a distorted tetrahedron. Furthermore, these Cu(I) complexes exhibit supramolecular motifs of the type multiple phenyl embraces resulting from attractive interactions between phenyl rings of PPh3 moieties. The presence of the C–H…Cu weak intramolecular hydrogen bonds, due to the trapping of C–H bonds in the vicinity of the metal atoms, is also reported.  相似文献   

11.

Abstract  

Four complexes of 3,3-diphenylpropanoate (L) and 4,4′-bipyridine as auxiliary bridging ligands were synthesized and characterized, namely [Zn(L)2(4bpy)(EtOH)2] (1), [Co(L)2(4bpy)(EtOH)2] (2), [Ni(L)2(4bpy)(EtOH)2] (3), and [Cu(L)2(4bpy)(H2O)] (4) (4bpy = 4,4′-bipyridine). X-ray single-crystal diffraction analyses show that complexes 14 all take one-dimensional (1D) fishbone-like structures incorporating bridging 4bpy ligands. The complexes show different supramolecular frameworks interlinked via intermolecular hydrogen bonds, π···π stacking, and/or C–H···π supramolecular interactions. Complex 3 only has a simple one-dimensional fishbone-like chain, whereas complexes 1 and 2 show two-dimensional supramolecular structures by interchain C–H···O hydrogen bonds. Complex 4 is assembled into two-dimensional layers and then an overall three-dimensional framework by a combination of interchain O–H···O hydrogen bonds and C–H···π supramolecular interactions. The luminescent properties of the ligands and their complexes were investigated.  相似文献   

12.
Abstract  Two new complexes, [Ag(L)2](NO3) · (H2O) (1) and [Co(L)2Cl2] (2) [L = 1-(imidazol-1-yl-methyl)-benzotriazole], have been synthesized and structurally characterized by X-ray diffraction techniques. In complex (1), the Ag(I) atom adopts a linear coordination geometry involving the imidazole nitrogens of two ligands. The [Ag(L)2] units are developed into a three-dimensional structure by intermolecular hydrogen bonds, π–π interactions, and Ag···O interactions. In complex (2), the Co(II) atom is in a distorted tetrahedral environment with two imidazole nitrogens and two chloride ligands. The [Co(L)2Cl2] units are assembled into a three-dimensional structure by intermolecular hydrogen bonds and π–π interactions. The bioactivities of both complexes have been studied, and the results indicate that complex (1) exhibits excellent radical-scavenging (RS) and fungicidal (FG) activities while complex (2) only has weak fungicidal activity. Graphical abstracts   Synthesis, crystal structures and biological activities of silver(I) and cobalt(II) complexes with an azole derivative ligand. Chang-Xue An, Xin-Li Han, Peng-Bang Wang, Zhi-Hui Zhang*, Hai-Ke Zhang and Zhi-Jin Fan Two novel complexes, [Ag(L)2](NO3) · (H2O) (1) and [Co(L)2Cl2] (2) [L = 1-(imidazol-1-yl-methyl)-benzotriazole] have been synthesized and structurally characterized. The molecules of complexes (1) and (2) are extended to 2-D and 3-D structures by the non-coordinated bonds. The ligand and complex (1) exhibit excellent radical-scavenging and fungicidal activities. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
1H and 13C NMR chemical shifts have been determined and assigned based on PFG 1H, 13C HMQC, and HMBC experiments for 3-(4′-X-benzyl)-4-chromenones (Ia, X = CN and Ib, X = NO2), 3-(4′-X-benzyl)-4-thiochromenones (IIa, X = Cl and IIb, X = Br), (E)-3-(4′-X-benzylidene)-4-chromanones (IIIaIIIe, X = OCH3, CH3, Cl, N(CH3)2, Br), (Z)-3-(4′-X-benzylidene)4-thiochromanones (IVaIVd, X = Cl, Br, F, OCH3), 2-benzyl-1,2,3,4-tetrahydro-1-naphthol (V), 2-benzyl- and (E)-2-benzylidene-1-tetralones (VI and VII), and (E)-2-benzylidene-1-benzosuberol (VIII). The crystal structures have been determined for the following seven compounds: derivatives of 4-chromanones (IIIaIIId), 1-tetrahydronaphtol (V), and 1-tetralones (VI and VII). The molecular features and intermolecular interactions in crystal state have been discussed.  相似文献   

14.
Crystal structures of a series of p-halogenated 6,6-diphenylfulvenes 25 are reported and comparatively discussed including the known structure of the non-halogenate parent compound 1. The molecular structures show twisted conformations of the plane aryl and fulvene subunits against each other, rather unaffected by the different halogen substituents. The packing structures exclusively involve C–H···X (X = F, Cl, π) contacts while Hal···Hal and π-stacking interactions do not occur.  相似文献   

15.
The molecular structure of triphenylsilane has been investigated by gas-phase electron diffraction and theoretical calculations. The electron diffraction intensities from a previous study (Rozsondai B, Hargittai I, J Organomet Chem 334:269, 1987) have been reanalyzed using geometrical constraints and initial values of vibrational amplitudes from calculations. The free molecule has a chiral, propeller-like equilibrium conformation of C 3 symmetry, with a twist angle of the phenyl groups τ = 39° ± 3°; the two enantiomeric conformers easily interconvert via three possible pathways. The low-frequency vibrational modes indicate that the three phenyl groups undergo large-amplitude torsional and out-of-plane bending vibrations about their respective Si–C bonds. Least-squares refinement of a model accounting for the bending vibrations gives the following bond distances and angles with estimated total errors: r g(Si–C) = 1.874 ± 0.004 ?, 〈r g(C–C)〉 = 1.402 ± 0.003 ?, 〈r g(C–H)〉 = 1.102 ± 0.003 ?, and ∠aC–Si–H = 108.6° ± 0.4°. Electron diffraction studies and MO calculations show that the lengths of the Si–C bonds in H4−n SiPh n molecules (n = 1–4) increase gradually with n, due to π → σ*(Si–C) delocalization. They also show that the mean lengths of the ring C–C bonds are about 0.003 ? larger than in unsubstituted benzene, due to a one hundredth angstrom lengthening of the Cipso–Cortho bonds caused by silicon substitution. A small increase of r(Si–H) and decrease of the ipso angle with increasing number of phenyl groups is also revealed by the calculations.  相似文献   

16.
Abstract  To explore the influence of the anthracene ring skeleton, with a large conjugated π-system, on the structures and properties of its complexes, two MnII complexes with anthracene-9-carboxylate ligand were synthesized and structurally characterized: {[Mn(L)2(H2O)2](H2O)} (1) and [Mn2(L)4(phen)2(μ-H2O)](CH3OH) (2) (L = anthracene-9-carboxylate and phen = 1,10-phenanthroline). Complex (1) has a one-dimensional (1D) chain structure that is further assembled to form a two-dimensional (2D) sheet, and then an overall three-dimensional (3D) network by π···π stacking and/or C–H···π interactions. Complex (2) makes a dinuclear structure by incorporating the chelating phen ligand, which is further interlinked via inter-molecular π···π stacking and C–H···π interactions to generate a higher-dimensional supramolecular network along the different crystallographic directions. The results reveal that the bulky anthracene ring skeleton in L, by virtue of intra- and/or inter-molecular π···π stacking and C–H···π interactions, plays an important role in the formation of complexes (1) and (2). The magnetic properties of (1) and (2) were further investigated. As expected, the very long inter-metallic separations result in weak magnetic coupling, with the corresponding coupling constant values of J = −10 cm−1 for (1) and J = −2.46 cm−1 for (2). Graphical abstract  The constructions of two new MnII complexes comprising 1D chain (1) and dinuclear subunit (2) structures have been successfully achieved by using a bulky anthracene-9-carboxylic acid (HL), together with incorporating the chelating 1,10-phenanthroline as a co-ligand for (2). The result reveals that the bulky anthracene ring skeleton of HL, by virtue of intra- and/or inter-molecular π···π stacking and C–H···π interactions, plays an important role in the formation of the supramolecular architectures of (1) and (2). Moreover, magnetic properties of the complexes have been investigated.   相似文献   

17.
The synthesis, spectral characterization and crystal structures of two nitrobenzoatocopper(II) complexes, namely [Cu(2-O2Nbz)2(pca)2(H2O)2] (1) and [Cu(3,5-(O2N)2bz)2(pca)2(H2O)2] (2) (where 2-O2Nbz = 2-nitrobenzoate, 3,5-(O2N)2bz = 3,5-dinitrobenzoate, pca = pyrazinecarboxamide), are reported. Complexes 1 and 2 consist of centrosymmetric molecules with the Cu(II) atom monodentately coordinated by a pair of anionic 2-nitrobenzoato (1) or 3,5-dinitrobenzoato (2) ligands and a pair of pyrazinecarboxamide ligands, forming a nearly tetragonal basal plane, and by a pair of water ligands that complete the tetragonal–bipyramidal coordination polyhedron. The molecules of both complexes are linked by N–H⋯O and O–H⋯O hydrogen bonds and lie in planes, which have different orientations depending on the space group. Similar experiments with 3-nitrobenzoic acid resulted in the isolation of the hydrolysis product [Cu(pyzCOO)2] n (3) (pyzCOO = pyrazinecarboxylate). The known crystal structure of complex 3 has been re-determined at low temperature with significantly higher precision. The crystal packing and C–H⋯O/C–H⋯N hydrogen bonds are discussed.  相似文献   

18.
Two mononuclear copper(II) complexes, [Cu(bpy)2(CH3OH)](pic)2 (1) and [Cu(Me2bpy)2(H2O)](pic)2 (2) (bpy = 2,2′-bipyridine; Me2bpy = 4,4′-dimethyl-2,2′-bipyridine; Hpic = 2,4,6-trinitrophenol), were synthesized and characterized by elemental analyses, conductivity measurements, IR, UV–Visible spectroscopy and single crystal X-ray analyses. Both complexes 1 and 2 are mononuclear compounds. The copper atom in complex 1 is in a distorted square pyramidal geometry with a CuN4O chromophore as revealed from the τ value (0.25), while the Cu(II) ion in complex 2 displays a distorted trigonal bipyramidal stereochemistry with τ = 0.72. Hydrogen bonding interactions and π–π stacking interactions link the mononuclear copper complex 1 or 2 into a 1D infinite chain. The interactions of the two mononuclear complexes with herring sperm DNA (HS-DNA) have been studied by UV–visible absorption titration, fluorescence titration and ethidium bromide (EB) displacement experiments. The results suggest that both complexes might bind to DNA by intercalation.  相似文献   

19.

Abstract  

A mononuclear complex [CoL2Cl2]·3.5H2O (L = 2-[(2,2-diphenylethylimino)methyl]pyridine-1-oxide) has been synthesized and characterized by X-ray structure analysis. The crystal structure confirms the formation of an interesting porous framework with channel diameters of about 8 ? through weak C–H···π and C–H···Cl interactions. The magnetic properties of this complex have also been studied, and the susceptibility and magnetization data were analyzed in terms of the spin Hamiltonian formalism. They confirm substantial zero-field splitting, D/hc = 75 cm−1.  相似文献   

20.

Abstract  

In this study two zinc(II) halide complexes with the Schiff-base ligand (3,4-MeO-ba)2en [N,N′-bis(3,4-dimethoxybenzylidene)ethane-1,2-diamine] have been synthesized and characterized by elemental analyses (CHN), single-crystal X-ray diffraction, Fourier-transform infrared (FT-IR), and 1H nuclear magnetic resonance (NMR) spectroscopy. The metal-to-ligand ratio was found to be 1:1 within the formula ZnX2((3,4-MeO-ba)2en) (X = Br, I). Crystal structure analysis reveals that the coordination geometry around the zinc(II) ions in the two isotypic complexes is distorted tetrahedral. The Schiff-base ligand (3,4-MeO-ba)2en acts as a chelating ligand and coordinates via two N atoms to the metal center and adopts an (E,E) conformation. The coordination spheres of the metal atoms are completed by the two halide atoms, which are also involved in weak non-classical hydrogen-bonding interactions of the type C–H···X–Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号