首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown that the non-Abelian spin-orbit gauge field strength of the Rashba and Dresselhaus interactions, when split into two Abelian field strengths, the Hamiltonian of the system can be re-expressed as a Landau level problem with a particular relation between the two coupling parameters. The quantum levels are created with up and down spins with opposite chirality and leads to the quantum spin Hall effect.  相似文献   

2.
The spin polarized charge transport is systematically analyzed as a thermally driven stochastic process. The approach is based on Kramers' equation describing the semiclassical motion under the inclusion of stochastic and damping forces. Due to the relativistic spin-orbit coupling the damping experiences a relativistic correction leading to an additional contribution within the spin Hall conductivity. A further contribution to the conductivity is originated from the averaged underlying crystal potential, the mean value of which depends significantly on the electric field. We derive an exact expression for the electrical conductivity. All corrections are estimated in lowest order of a relativistic approach and in the linear response regime.  相似文献   

3.
The influence of in-plane magnetic field on spin polarization in the presence of the oft-neglected k3-Dresselhaus spin-orbit coupling was investigated. The k3-Dresselhaus term can produce a limited spin polarization. The in-plane magnetic field plays a great role in the tunneling process. It can generate the perfect spin polarization of the electrons and the ideal transmission coefficient for spin up and down simultaneously. In energy scale, complete separation between spin up and down resonance was obtained by a relatively higher in-plane magnetic field while a comparatively lower in-plane magnetic field vanishes the spin separation. On the other hand, the spin relaxation can be suppressed by compensating the oft-neglected k3-Dresselhaus spin orbit coupling using a relatively lower in-plane magnetic field.  相似文献   

4.
A study on characteristics of electrons tunneling through semiconductor barrier is evaluated, in which we take into account the effects of Rashba spin-orbit interaction. Our numerical results show that Rashba spin-orbit effect originating from the inversion asymmetry can give rise to the spin polarization. The spin polarization does not increase linearly but shows obvious resonant features as the strength of Rashba spin-orbit coupling increases, and the amplitudes of spin polarization can reach the highest around the first resonant energy level. Furthermore, it is found that electrons with different spin orientations will spend quite different time through the same heterostructures. The difference of the dwell time between spin-up and spin-down electrons arise from the Rashba spin-orbit coupling. And it is also found that the dwell time will reach its maximum at the first resonant energy level. It can be concluded that, in the time domain, the tunneling processes of the spin-up and spin-down electrons can be separated by modulating the strength of Rashba spin-orbit coupling. Study results indicate that Rashba spin-orbit effect can cause a nature spin filter mechanism in the time domain.  相似文献   

5.
A nanowire superlattice of InAs and GaAs layers with In0.47Ga0.53As as the impure layers is proposed. The oft-neglected k3 Dresselhaus spin-orbit coupling causes the spin polarization of the electron but often can produce a limited spin polarization. In this nanowire superlattice, Dresselhaus term produce complete spin filtering by optimizing the distance between the In0.47Ga0.53As layers and the Indium (In) in the impure layers. The proposed structure is an optimized nanowire superlattice that can efficiently filter any component of electron spins according to its energy. In fact, this nanowire superlattice is an energy dependent spin filter structure.  相似文献   

6.
The influence of the Dresselhaus spin-orbit coupling on spin polarization by tunneling through a disordered semiconductor superlattice was investigated. The Dresselhaus spin-orbit coupling causes the spin polarization of the electron due to transmission possibilities difference between spin up and spin down electrons. The electron tunneling through a zinc-blende semiconductor superlattice with InAs and GaAs layers and two variable distance InxGa(1−x)As impurity layers was studied. One hundred percent spin polarization was obtained by optimizing the distance between two impurity layers and impurity percent in disordered layers in the presence of Dresselhaus spin-orbit coupling. In addition, the electron transmission probability through the mentioned superlattice is too much near to one and an efficient spin filtering was recommended.  相似文献   

7.
We study analytically, spin polarised current induced dynamics of Dzyaloshinskii-Moriya helimagnets within the phenomenological Landau-Lifshitz framework. Similarities and differences between two popular models of dissipative structures (Gilbert and Landau-Lifshitz dissipation) are explored. Analytical results are obtained and discussed for the magnetisation, the wave number and the velocity of the helical magnetisation structures which are analogous to the behaviour of domain walls under spin polarised current in ferromagnets.  相似文献   

8.
A. John Peter 《Physics letters. A》2008,372(31):5239-5242
The spin dependent electron transmission through a non-magnetic III-V semiconductor symmetric well is studied theoretically so as to investigate the output transmission current polarization at zero magnetic field. Transparency of electron transmission is calculated as a function of electron energy as well as the well width, within the one electron band approximation along with the spin-orbit interaction. Enhanced spin-polarized resonant tunneling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level is observed. We predict that a spin-polarized current spontaneously emerges in this heterostructure. This effect could be employed in the fabrication of spin filters, spin injectors and detectors based on non-magnetic semiconductors.  相似文献   

9.
The phenomena of the spin-Hall effect, initially proposed over three decades ago in the context of asymmetric Mott skew scattering, was revived recently by the proposal of a possible intrinsic spin-Hall effect originating from a strongly spin-orbit coupled band structures. This new proposal has generated an extensive debate and controversy over the past 2 years. On August 2006 the first workshop on the spin-Hall effect was held at the Asian Pacific Center for Theoretical Physics. Its purpose was to bring together many of the leading groups in this field to resolve such issues and identify future challenges. We offer this short summary to clarify formerly controversial issues now settled and help refocus the research efforts in new and important avenues.  相似文献   

10.
Using the time-dependent Schrödinger equation, we present the analytical result of the expectation value of spin injected into a two-dimensional electron gas with respect to an arbitrarily spin-polarized electron state and monitor the spin time-evolution. We demonstrate that the expectation value of spin operator Sx is the time-independent, and only the expectation values in the Sy-Sz plane are time-dependent. A detailed study of spin precession in the spin-valve and spin-transistor geometry is presented, in which the initial spin-polarized electron state point perpendicular and parallel to the current direction, respectively. We put forward the possible reason that the resistance change is independent of gate voltage in the spin-valve geometry. Furthermore, it has been shown that the effective magnetic field generated by the spin-orbit interaction is not same with the truly magnetic field. The main effect of the truly magnetic field is to align the spin along the field direction, but the effective magnetic field generated by the spin-orbit interaction does not.  相似文献   

11.
Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n−1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure.  相似文献   

12.
We investigate theoretically the spin-polarized electron transport for a wide-narrow-wide (WNW) quantum wire under the modulation of Rashba spin-orbit interaction (SOI). The influence of both the structure of the quantum wire and the interference between different pairs of subbands on the spin-polarized electron transport is taken into account simultaneously via the spin-resolved lattice Green function method. It is found that a very large vertical spin-polarized current can be generated by the SOI-induced effective magnetic field at the structure-induced Fano resonance even in the presence of strong disorder. Furthermore, the magnitude of the spin polarization can be tuned by the Rashba SOI strength and structural parameters. Those results may provide an effective way to design a spin filter device without containing any magnetic materials or applying a magnetic field.  相似文献   

13.
Some exact identities connecting one- and two-particle Green's functions in the presence of spin–orbit coupling have been derived. These identities are similar to the Ward identity in usual quantum transport theory of electrons. A satisfying approximate calculation of the spin transport in spin–orbit coupling system should also preserve these identities, just as the Ward identities should be remained in the usual electronic transport theory.  相似文献   

14.
15.
We investigate theoretically the spin-polarized transport in one-dimensional waveguide structure with spatially-periodic electronic and magnetic fields. The interplay of the spin-orbit interaction and in-plane magnetic field significantly modifies the spin-dependent transmission and the spin polarization. The in-plane magnetic fields increase the strength of the Rashba spin-orbit coupling effect for the electric fields along y axis and decrease this effect for reversing the electric fields, even counteract the Rashba spin-orbit coupling effect. It is very interesting to find that we may deduce the strength of the Rashba effect through this phenomenon.  相似文献   

16.
L. Ren 《Physics letters. A》2008,372(23):4307-4310
In terms of Kubo's formula and Green's function method, for the two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling (SOC), we study the spin polarization due to the effect from magnetic impurities with anisotropic spin dependent delta type coupling to electrons when an external dc electric field in plane is applied. The vertex correction of impurities in ladder approximation is carried out in the limit of EF?1/τ, Δ. We find that the strength of spin polarization can be significantly modified by vertex correction and the spin polarization is relevant to the anisotropy coefficient γ, but the direction of net spin polarization cannot be changed.  相似文献   

17.
The transport properties of the Datta and Das's spin transistor with the center normal region (or the quantum dot) having Rashba spin–orbit interaction and electron–electron (e–e) interaction U are investigated. We find while intra-dot level is near or above the chemical potential of the leads, the modulation efficiency of this spin transistor almost is not influenced by U. On the other hand, when the level is below the chemical potential, e–e interaction U may affect the modulator efficiency, because in this case the existence of e–e interaction can change the transport properties of the quantum dot. But the modulation efficiency still keep enough large and the spin transistor can effectively work.  相似文献   

18.
Electrically induced electron spin polarization is imaged in n-type ZnSe epilayers using Kerr rotation spectroscopy. Despite no evidence for an electrically induced internal magnetic field, current-induced in-plane spin polarization is observed with characteristic spin lifetimes that decrease with doping density. The spin Hall effect is also observed, indicated by an electrically induced out-of-plane spin polarization with opposite sign for spins accumulating on opposite edges of the sample. The spin Hall conductivity is estimated as 3+/-1.5 Omega(-1) m(-1)/|e| at 20 K, which is consistent with the extrinsic mechanism. Both the current-induced spin polarization and the spin Hall effect are observed at temperatures from 10 to 295 K.  相似文献   

19.
Huaizhe Xu  Qiqi Yan 《Physics letters. A》2008,372(40):6216-6220
Electron spin-dependent transport properties have been theoretically investigated in two-dimensional electron gas (2DEG) modulated by the magnetic field generated by a pair of anti-parallel magnetization ferromagnetic metal stripes and the electrostatic potential provided by a normal metal Schottky stripe. It is shown that the energy positions of the spin-polarization extremes and the width of relative spin conductance excess plateau could be significantly manipulated by the electrostatic potential strength and width, as well as its position relative to the FM stripes. These interesting features are believed useful for designing the electric voltage controlled spin filters.  相似文献   

20.
We report a study of spin-dependent transport through a quantum dot irradiated by continuous circularly polarized light resonant to the electron-heavy hole transition. We use the nonequilibrium Green's function to calculate the spin accumulation, spin-resolved currents, and current polarization in the presence of an external bias and intradot Coulomb interaction. It is found that for a range of external biases sign reversal of the current polarization can be modulated. The system thus operates as a rectifier for spin current polarization. This effect follows from the interplay between the external irradiation and the Coulomb repulsion. The spin-polarized transport through a three-terminal device is also discussed. Spin current with high polarization could be obtained due to spin filter effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号