首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The ambient structural details and the results of room temperature high pressure angle dispersive X-ray diffraction and electrical resistance measurements on the quasi-one-dimensional sulfide, InV6S8, to a pressure of 25 GPa are reported. The material does not undergo a phase transition in this pressure range, though an anomaly in the c/a ratio has been observed around 10 Gpa. A fit of the Murnaghan equation of state to the V/V0 versus pressure data, with the value of the derivative of B0 with respect to pressure, B0, fixed at 4 has yielded a value of the bulk modulus, B0, of 110 GPa. We also present data of the pressure dependence of the lattice constants, a and c, the ratio c/a, and the resistance at room temperature.  相似文献   

2.
We report the results of electrical resistance measurements at high pressures on Cs2MoS4 and KTbP2Se6. The results of high pressure X-ray diffraction study of Cs2MoS4 are also presented. Interestingly, in the case of Cs2MoS4 the resistance vs. pressure follows the behavior of the absorption edge vs. pressure obtained from our optical measurements lending further support to a direct-indirect band crossing. In the case of KTbP2Se6,the phase transition at about 9.2 GPa is reflected in a sharp drop of the resistance. In addition we report the pressure dependence of the lattice constants as well as the equation of state of Cs2MoS4.  相似文献   

3.
Results of electrical resistance measurements on MgB2 at ambient temperature up to 25 GPa are presented. An abrupt reduction of nearly 30% in resistance around 18 GPa is observed. Band structure calculations in the presence of a frozen-in distortion of the E2g phonon mode reveal that one of the closed Fermi sheets corresponding to the σ-band opens along the Γ-A direction at this pressure. It is suggested that the anomaly observed in the resistance is due to this phonon mediated electronic topological transition (ETT).  相似文献   

4.
Results of X-ray diffraction, electrical resistance, thermoelectric power measurements and electronic band structure calculations on NiSi2 under high pressure are reported. The thermoelectric power (TEP) changes sign near 0.5 GPa (from +30 to −20 μV/K). As the pressure is increased, the value of TEP increases further in magnitude and near 7 GPa it becomes −50 μV/K. The pressure vs. resistance curve measured up to 30 GPa using diamond anvil (DAC)-based technique exhibits a broad hump near 12 GPa and exhibits hysteresis on pressure release. The ADXRD patterns up to 42 GPa show a gradual irreversible loss of long-range order in NiSi2 with the diffraction lines progressively broadening under pressure. The FWHM of the diffraction lines show a rapid increase in the half-widths close to 0.5 GPa and also near 12 GPa. The computed band structure at a compression (without any disorder) corresponding to 12 GPa, exhibits an electronic topological transition (ETT). The rapid increase in disorder above 12 GPa implies that the ETT may be facilitating the structural disorder. It is suggested that the pressure drives the material through a region of entropic and energetic barriers and induces disorder in the material.  相似文献   

5.
 高压下的电学性质测量是获得材料物理性质的有效手段。利用集成在金刚石对顶砧上的薄膜微电路,测量了高压下Fe3O4/β-CD(β-糊精)的电导率,并分析了电导率随压力的变化关系。在0~39.9 GPa范围内,Fe3O4/β-CD的电导率随压力的增加而逐渐增大,并呈半导体的特征;而在17.0 GPa处其电导率发生突变,表明样品发生了高压相变。在卸压过程中,电导率随压力的变化呈线性关系,并且卸压后样品的电导率不能回到最初的状态,推测这是一个不可逆的高压结构相变。  相似文献   

6.
We report the influence of external high-pressure (P up to 8 GPa) on the temperature (T) dependence of electrical resistivity (ρ) of a Yb-based Kondo lattice, YbPd2Si2, which does not undergo magnetic ordering under ambient pressure condition. There are qualitative changes in the ρ(T) behavior due to the application of external pressure. While ρ is found to vary quadratically below 15 K (down to 45 mK) characteristic of Fermi-liquids, a drop is observed below 0.5 K for P=1 GPa, signaling the onset of magnetic ordering of Yb ions with the application of P. The T at which this fall occurs goes through a peak as a function of P (8 K for P=2 GPa and about 5 K at high pressures), mimicking Doniach's magnetic phase diagram. We infer that this compound is one of the very few Yb-based stoichiometric materials, in which one can traverse from valence fluctuation to magnetic ordering by the application of external pressure.  相似文献   

7.
Pyrite-structured Co0.2Fe0.8S2 nano wires with aspect ratio 45:1, synthesized using solution colloid method were studied under high pressure up to 8 GPa using 57Fe Mössbauer spectroscopy (using diamond anvil cell) and electrical resistivity (using tungsten carbide cell) techniques. Room temperature S K-edge XANES studies at INFN-LNF synchrotron beam line signified the changes in the electronic structure owing to Co substitution. Magnetic measurements at 5 K demonstrated disordered ferromagnetic behavior similar to Griffith phase. The value of isomer shift identified Fe in divalent, low spin state corresponding to pyrite structure. Higher value of quadrupole splitting observed at ambient condition was due to large lattice strain and electric field gradient generated by large surface to volume ratio of the nano size of the system. With applied pressure, the value followed the expected trend of increase up to 4.3 GPa, then to decrease till 6.4 GPa. Such change in the trend suggested a phase transition. On decompression to ambient pressure, the system seemed to retain high pressure phase and nano structure. The pressure coefficient of electrical resistivity varying from −0.0454 to −0.166 Ω-cm/GPa across the transition pressure of ~4.5 GPa was sluggish suggesting second order phase transition. The pressure-dependent variations by Mössbauer parameters and electrical resistivity showed identical result. This is the first report of pressure effect on nano sized Co0.2Fe0.8S2. Effect of particle size on transition pressure could not be evaluated due to lack of available reports on bulk system.  相似文献   

8.
The room-temperature Raman and infrared spectra of zirconium vanadate (ZrV 2O7) were observed up to pressures of 12 GPa and 5.7 GPa, respectively. The frequencies of the optically active modes at ambient pressure were calculated using direct methods and compared with experimental values. Average mode Grüneisen parameters were calculated for the Raman and infrared active modes. Changes in the spectra under pressure indicate a phase transition at ∼1.6 GPa, which is consistent with the previously observed α (cubic) to β (pseudo-tetragonal) phase transition, and changes in the spectra at ∼4 GPa are consistent with an irreversible transformation to an amorphous structure.  相似文献   

9.
Electrical conduction and crystal structure of Al2(WO4)3 at 400 °C have been studied as a function of pressure up to 5.5 GPa using impedance methods and synchrotron radiation X-ray diffraction, respectively. AC impedance spectroscopy and DC polarization measurements reveal an ionic to electronic dominant transition in electrical conductivity at a pressure as low as 0.9 GPa. Conductivity increases with pressure and reaches a maximum at 4.0 GPa, where the conductivity value is 5 orders of magnitude greater than the 1 atm value. Upon decompression, the conductivity retains the maximum value until the sample is cooled at 0.5 GPa. The high pressure-temperature X-ray diffraction results show that the lattice parameters decrease as pressure increases and the crystal structure undergoes an orthorhombic to tetragonal-like transformation at a pressure ∼3.0 GPa. The change of conduction mechanism from ionic to electronic may be explained by means of pressure-induced valence change of W6+→W5+, which results in electron transfer between W5+-W6+ sites at high pressure.  相似文献   

10.
The equations of state of CeCu2Si2 and CeCu2Ge2 to about 60 GPa, as well as that of CeNi2Ge2 to 22 GPa and the valence state of Ce in CeCu2Ge2 to 20 GPa have been studied at room temperature in a diamond-anvil cell using synchrotron radiation sources. In each compound, the ambient-pressure phase (tetragonal ThCr2Si2-type structure) persisted to the highest pressure studied. The unit cell volumes of CeNi2Ge2 at ∼5 GPa and CeCu2Ge2 at ∼7 GPa, respectively, approached that of CeCu2Si2 taken at ambient pressure. From the equation-of-state data, the bulk modulus was derived to be 112.0±5.1 GPa for CeCu2Si2, 125.6±4.3 GPa for CeCu2Ge2, and 178.4±14.3 GPa for CeNi2Ge2. The valence state of Ce in CeCu2Ge2 remained trivalent throughout the pressure range investigated.  相似文献   

11.
The Raman spectroscopic studies of two rare earth trihydrides: Y H3, HoH3, have been performed in the pressure range from ambient up to 16 GPa and 25 GPa respectively. For the first time samples of REH3 in the form of powder have been studied by Raman spectroscopy using the Diamond Anvil Cell (DAC) technique. A rapid decrease of Raman activity has been observed for the hydrides under pressure values in the vicinity of structural phase transition. Metallization as a possible reason for the observed dramatic change of the REH3 Raman activity has been discussed.  相似文献   

12.
The lattice parameters of Al3BC have been measured up to 5 GPa at ambient temperature using energy-dispersive X-ray powder diffraction with synchrotron radiation. A fit to the experimental p-V data using Birch-Murnaghan equation of state gives values of the Al3BC bulk modulus 116(4) GPa and its first pressure derivative 9(2). In the 1.6-4.8 GPa range at temperatures above 1700 K Al3BC undergoes incongruent melting that results in the formation of Al3BC3, AlB2 and liquid aluminum.  相似文献   

13.
The crystal structure of AgSbTe2 has been refined using first-principles calculations, from which the ordering of the cations, Ag and Sb, was confirmed. The spontaneous formation of two (D4 and L11) phases at ambient and elevated pressure was demonstrated theoretically. The compound was also prepared and its high-pressure structural deformation sequence, ranging from ambient to 50.9 GPa, was observed with synchrotron radiation at room temperature. The compound underwent a pressure-induced amorphization (PIA) at 24.6 GPa and then started recrystallizing at 49.2 GPa. The bulk modulus (B0) and pressure derivative of the bulk modulus (Bp) were determined experimentally to be 56.3 ± 5.1 GPa and 4.3 ± 0.8, respectively. We suggest that large displacements of Te atoms to Ag vacancy positions are responsible for PIA and the recrystallization.  相似文献   

14.
In-situ high pressure Raman spectra and electrical conductivity measurements of scheelite-structure compound PbMoO4 are presented. The Raman spectrum of PbMoO4 is determined up to 26.5 GPa on a powdered sample in a diamond anvil cell (DAC) under nonhydrostatic conditions. The PbMoO4 gradully experiences the trans- formation from the crystal to amorphous between 9.2 and 12.5 GPa. The crystal to amorphous transition may be due to the mechanical deformation and the crystalographic transformation. Furthermore, the electrical conductivity of PbMoO4 is in situ measured accurately using a microcircuit fabricated on a DAC based on the van der Pauw method. The results show that the electrical conductivity of PbMoO4 increases with increases of pressure and temperature. At 26.5 GPa, the electrical conductivity value of PbMoO4 at 295K is 1.93 - 10-4 S/cm, while it raises by one order of magnitude at 430K and reached 3.33 - 10-3 S/cm. However, at 430K, compared with the electrical conductivity value of PbMoO4 at 26.5 GPa, it drops by about two order magnitude at 7.4 GPa and achieves 2.81 × 10^-5 S/cm. This indicates that the effect of pressure on the electrical conductivity of PbMoO4 is more obvious than that of temperature.  相似文献   

15.
Synchrotron x-ray diffraction measurements of CdCu3Ti4O12 (CDCTO) were performed up to 55.5 GPa. There is no structural phase transformation in this pressure range. The irregular curvature shifts of the P-V curve are attributed to the grain surface effect. Analysis indicates that the grain surface of CDCTO is stiffer than the grain interior at higher pressures. We point out that the atoms on grain surfaces must be either densely packed or have a strong correlation with the gain interior in order to have a high dielectric constant, as in CaCu3Ti4O12. The derived bulk modulus of CDCTO is approximately 235±7 GPa with K=5.1±0.4.  相似文献   

16.
High pressure behavior of CaB6 with cubic crystal structure is investigated by means of energy dispersive X-ray diffraction and by employing in situ resistance measurement in a diamond anvil cell. Two newcome high pressure phase transitions are found with pressure ranging from ambient to 26 GPa. The first one at 12 GPa is a structural phase transition from CsCl-type structure to orthogonal structure, which is reflected by both the X-ray diffraction and the resistance variation. The other one at 3.7 GPa is suggested to be an electronic transition, which is observed only in resistance measurement. The diffraction pattern recovered while the pressure is released to 0 GPa with a pressure hysteresis over 11 GPa, which implies the reversibility of the two phase transitions. Bulk moduli of the cubic and orthogonal phases are estimated by fitting the data to a Brich-Murnaghan equation of state equal to 169.9 and 48.2 GPa, respectively.  相似文献   

17.
We have measured the electrical resistance of an Nb0.53Ti0.47 alloy sample as a function of temperature T (4-300 K) and pressure (<20 GPa). At low temperatures, above the superconducting transition, we observe a T2 term whose coefficient decreases with pressure. It is linearly dependent on the residual resistance, that also decreases with pressure, in strong agreement with a Koshino-Taylor origin, i.e. inelastic carrier scattering against impurities.  相似文献   

18.
Up to now a Ni2In structure is a final step in the structural sequence of ionic AX2 compounds under high pressure. Powder X-ray diffraction experiments on BaH2 were performed at room temperature and high pressures up to 69 GPa. Successive phase transformations were observed to occur in two stages. The first was from the cotunnite to the Ni2In structure at 2.5 GPa. The second transition commenced at pressures around 50 GPa and was completed at 65 GPa. At the transition the arrangement of a cation sublattice changes from an hcp to a simple hexagonal lattice. This is the first observation of the post Ni2In phase.  相似文献   

19.
We report the results of a room-temperature investigation of the thermoelectric and the dilatometric properties of a heavy fermion system YbPd2Si2 (itterbium-palladium-silicon, 1-2-2) at high pressure P up to 22 GPa; YbPd2Si2 is a less-studied representative of the RM2X2 family (R=Ce, Yb, U; M=transition metal; X=Si, Ge) with the tetragonal ThCr2Si2-type structure of the I4/mmm space group. Around P∼6±0.5 GPa, a phase transition in Yb-Pd-Si was registered by the drastic changes in the pressure dependencies of the electrical resistance R, the thermopower (Seebeck effect) S, a temperature difference along a sample ΔT, and a sample's thickness Δx (related to compressibility). Both a nature of the found phase transition and a presumable P-T phase diagram of YbPd2Si2 are discussed.  相似文献   

20.
The thermoelectric materials CoSb3 and LaFe3CoSb12 with skutterudite structure were subjected to high pressures using a diamond anvil high-pressure cell up to 20 GPa. Energy-dispersive X-ray diffraction was used to determine the dependence of the lattice parameter on pressure. No major change in the X-ray diffraction spectra was observed for both compounds, constituting evidence that both compounds are stable within this pressure range, despite their relatively open structures. Three distinct isothermal equations of state for solids under high pressure were fitted to the experimental data to determine the bulk modulus for both compounds. The filled skutterudite showed a greater compressibility than the unfilled one, this difference can be understood in terms of the larger lattice parameter of the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号