首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results are presented of a comparison of the amino acid (AA) δ(13)C values obtained by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) and liquid chromatography-isotope ratio mass spectrometry (LC/IRMS). Although the primary focus was the compound-specific stable carbon isotope analysis of bone collagen AAs, because of its growing application for palaeodietary and palaeoecological reconstruction, the results are relevant to any field where AA δ(13)C values are required. We compare LC/IRMS with the most up-to-date GC/C/IRMS method using N-acetyl methyl ester (NACME) AA derivatives. This comparison involves the analysis of standard AAs and hydrolysates of archaeological human bone collagen, which have been previously investigated as N-trifluoroacetyl isopropyl esters (TFA/IP). It was observed that, although GC/C/IRMS analyses required less sample, LC/IRMS permitted the analysis of a wider range of AAs, particularly those not amenable to GC analysis (e.g. arginine). Accordingly, reconstructed bulk δ(13)C values based on LC/IRMS-derived δ(13)C values were closer to the EA/IRMS-derived δ(13)C values than those based on GC/C/IRMS values. The analytical errors for LC/IRMS AA δ(13)C values were lower than GC/C/IRMS determinations. Inconsistencies in the δ(13)C values of the TFA/IP derivatives compared with the NACME- and LC/IRMS-derived δ(13)C values suggest inherent problems with the use of TFA/IP derivatives, resulting from: (i) inefficient sample combustion, and/or (ii) differences in the intra-molecular distribution of δ(13)C values between AAs, which are manifested by incomplete combustion. Close similarities between the NACME AA δ(13)C values and the LC/IRMS-derived δ(13)C values suggest that the TFA/IP derivatives should be abandoned for the natural abundance determinations of AA δ(13)C values.  相似文献   

2.
Carbohydrates and proteins are among the most abundant naturally occurring biomolecules and so suitable methods for their reliable stable isotope analysis by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) are required. Due to the non-volatile nature of these compounds they require hydrolytic cleavage to their lower molecular weight subunits and derivatisation prior to GC/C/IRMS analysis. The addition of carbon to the molecules and any kinetic isotopic fractionation associated with derivatisation must be accounted for in order to provide meaningful stable isotope values and estimates of propagated errors. To illustrate these points amino acid trifluoroacetate/isopropyl esters and alditol acetates were prepared from authentic amino acids and monosaccharides, respectively. As predicted from the derivatisation reaction mechanisms, a kinetic isotope effect was observed which precludes direct calculation of delta(13)C values of the amino acids and monosaccharides by simple mass balance equations. This study shows that the kinetic isotope effect associated with derivatisation is both reproducible and robust, thereby allowing the use of correction factors. We show how correction factors can be determined and accurately account for the addition of derivative carbon. As a consequence of the addition of a molar excess of carbon and the existence of a kinetic isotope effect during derivatisation, errors associated with determined delta(13)C values must be assessed. We illustrate how such errors can be quantified (for monosaccharides +/-1.3 per thousand and for amino acids between +/-0.8 per thousand and +/-1.4 per thousand). With the magnitude of the errors for a given delta(13)C value of a monosaccharide or amino acid quantified, it is possible to make reliable interpretations of delta(13)C values, thereby validating the determination of delta(13)C values of amino acids as TFA/IP esters and monosaccharides as alditol acetates.  相似文献   

3.
The scope of compound-specific stable isotope analysis has recently been increased with the development of the LC IsoLink which interfaces high-performance liquid chromatography (HPLC) and isotope ratio mass spectrometry (IRMS) to provide online LC/IRMS. This enables isotopic measurement of non-volatile compounds previously not amenable to compound-specific analysis or requiring substantial modification for gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), which results in reduced precision. Amino acids are an example of such compounds.We present a new chromatographic method for the HPLC separation of underivatized amino acids using an acidic, aqueous mobile phase in conjunction with a mixed-mode stationary phase that can be interfaced with the LC IsoLink for compound-specific delta13C analysis. The method utilizes a reversed-phase Primesep-A column with embedded, ionizable, functional groups providing the capability for ion-exchange and hydrophobic interactions. Baseline separation of 15 amino acids and their carbon isotope values are reported with an average standard deviation of 0.18 per thousand (n = 6). In addition delta13C values of 18 amino acids are determined from modern protein and archaeological bone collagen hydrolysates, demonstrating the potential of this method for compound-specific applications in a number of fields including metabolic, ecological and palaeodietary studies.  相似文献   

4.
Site-specific carbon isotope composition of organic compounds can provide useful information on their origin and history in natural environments. Site-specific isotope analyses of small amounts of organic compounds (sub-nanomolar level), such as short-chain carboxylic acids and amino acid analogues, have been performed using gas chromatography/pyrolysis/isotope ratio mass spectrometry (GC/pyrolysis/IRMS). These analyses were previously limited to volatile compounds. In this study, site-specific carbon isotope analysis has been developed for non-volatile aromatic carboxylic acids at sub-micromolar level by decarboxylation using a continuous flow elemental analysis (EA)/pyrolysis/IRMS technique. Benzoic acid, 2-naphthylacetic acid and 1-pyrenecarboxylic acid were pyrolyzed at 500-1000 degrees C by EA/pyrolysis/IRMS to produce CO2 for delta13C measurement of the carboxyl group. These three aromatic acids were most efficiently pyrolyzed at 750 degrees C. Conventional sealed-tube pyrolysis was also conducted for comparison. The delta13C values of CO2 generated by the continuous flow technique were within 1.0 per thousand of those performed by the conventional technique, indicating that the new continuous flow technique can accurately analyze the carbon isotopic composition of the carboxyl group in aromatic carboxylic acids. The new continuous flow technique is simple, rapid and uses small sample sizes, so this technique will be useful for characterizing the isotopic signature of carboxyl groups in organic compounds.  相似文献   

5.
A novel method has been developed for compound-specific isotope analysis for acetone via DNPH (2,4-dinitrophenylhydrazine) derivatization together with combined gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Acetone reagents were used to assess delta13C fractionation during the DNPH derivatization process. Reduplicate delta13C analyses were designed to evaluate the reproducibility of the derivatization, with an average error (1 standard deviation) of 0.17 +/- 0.05 per thousand, and average analytical error of 0.28 +/- 0.09 per thousand. The derivatization process introduces no isotopic fractionation for acetone (the average difference between the predicted and analytical delta13C values was 0.09 +/- 0.20 per thousand, within the precision limits of the GC/C/IRMS measurements), which permits computation of the delta13C values for the original underivatized acetone through a mass balance equation. Together with further studies of the carbon isotopic effect during the atmospheric acetone-sampling procedure, it will be possible to use DNPH derivatization for carbon isotope analysis of atmospheric acetone.  相似文献   

6.
Little is known about the delta13C composition of monosaccharides representing the largest carbon reservoir in the biosphere. The main reason for this might be that monosaccharides have to be derivatized prior to gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analyses and that a large isotopic correction is necessary for the carbon that has to be added to the original molecule during derivatization, resulting in large uncertainty of the calculated delta13C values of individual monosaccharides. The amount of added derivatization carbon is twice (alditol acetates) or even three times (trimethylsilyl (TMS) derivatives) as high as the amount of the original monosaccharide carbon. In addition, isotope fractionation occurs during acetylation. Therefore, the objectives of this study were (i) to minimize carbon addition during derivatization for GC/C/IRMS measurements of monosaccharides in soil and sediment samples and (ii) to quantify improvements in accuracy and precision of the final results. Minimization of carbon addition was accomplished by derivatization with methylboronic acid (MBA) and TMS thereafter (MBA method). Monosaccharides derivatized with the MBA method instead of TMS reduced the number of added carbon atoms from 2.2-2.7 to 0.3-0.8 per sugar carbon atom. Although the precision of GC/C/IRMS measurements with both methods is comparable (about 0.3 per thousand), delta13C values of an internal standard indicated that the newly developed MBA method is about 2 per thousand more accurate than the TMS method. delta13C comparison between soil samples that differed only slightly in their bulk carbon isotope signature showed that the MBA method is better in proving these small differences on a significant level. Total precision of the whole MBA method including all analytical and calculation steps is better by a factor of almost three than the TMS method.  相似文献   

7.
The application of a combined gas chromatography-combustion/isotope ratio mass spectrometry (GC-C/IRMS) method for stable carbon isotope analysis of amino acid enantiomers in soil samples is presented. Triplicate delta(13)C analyses of pentafluoropropionyl (PFP) isopropyl ester derivatives of 27 amino acid enantiomers revealed that discrimination of (13)C during derivatization is different for different amino acid enantiomers and different amounts. Injection of increasing amounts of amino acid derivatives showed that the isotopic signal varied up to 10 per thousand for D-aspartic acid. Correction for the delta(13)C signal of underivatized amino acid enantiomers is possible for all investigated amino acid enantiomers using logarithmic functions. Operating the GC-C/IRMS system in the split-mode (split ratio 1:12) is possible but resulted in a higher isotopic discrimination. The detection limit approached 3 ng for some amino acid enantiomers in the splitless mode, while the lower limit of routine determination exceeded 10 ng injection amount. The upper limit at which accurate stable isotope values were obtained was 200 ng injection amount. Compound-specific delta(13)C analysis of alanine, valine, aspartic and glutamic acid showed that the D-forms were enriched in (13)C relative to the L-forms, suggesting that microbes significantly contributed to the formation of the D-enantiomers in soil.  相似文献   

8.
We have developed a method based on a double labeling with stable isotopes and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analyses to study amino acid exchange in a symbiotic plant-microbe association. Isotopic precision was studied for 21 standards including 15 amino acid derivatives, three N-protected amino acid methyl esters, three amines and one international standard. High correlations were observed between the δ(13)C and δ(15)N values obtained by GC/C/IRMS and those obtained by an elemental analyzer (EA) coupled to an isotope ratio mass spectrometer (R(2) = 0.9868 and 0.9992, respectively). The mean precision measured was 0.04‰ for δ(13)C and 0.28‰ for δ(15)N (n = 15). This method was applied in vivo to the symbiotic relationship between alfalfa (Medicago sativa L.) and N(2)-fixing bacteria. Plants were simultaneously labeled over 10 days with (13)C-depleted CO(2) ((12)CO(2)), which was assimilated through photosynthesis by leaves, and (15)N(2) fixed via nodules. Subsequently, the C and N isotope compositions (i.e. δ(13)C and δ(15)N) of free amino acids were analyzed in leaves and nodules by GC/C/IRMS. The method revealed the pattern of C and N exchange between leaves and nodules, highlighting that γ-aminobutanoic acid and glycine may represent an important form of C transport from leaves to the nodules. The results confirmed the validity, reliability and accuracy of the method for assessing C and N fluxes between plants and symbiotic bacteria and support the use of this technique in a broad range of metabolic and fluxomic studies.  相似文献   

9.
A detailed procedure for the analysis of exogenous hydrocortisone and cortisone in urine by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) is proposed. As urinary levels of hydrocortisone are rather low for GC/C/IRMS analysis, the focus is on the main corticosteroid metabolites, tetrahydrocortisone (THE) and tetrahydrocortisol (THF). Following different solid phase extraction purifications, THE and THF are oxidized to 5beta-androstanetrione before analysis by GC/C/IRMS. Significant differences in delta(13)C per thousand values of synthetic natural corticosteroids and endogenous human corticosteroids have been observed. Therefore, a positive criterion, to detect exogenous administration of synthetic corticosteroids in anti-doping control, is proposed.  相似文献   

10.
The incorporation of stable isotopes improves the assessment of glucose metabolism and, with some researchers using two tracers, (2)H-glucose assessed by gas chromatography/mass spectrometry (GC/MS) and (13)C-glucose by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), a common derivative for both is advantageous. The most commonly used derivatives for GC/MS are inappropriate for GC/C/IRMS as additional functional groups dilute the label. We therefore considered the suitability of six derivatives for both GC/MS and GC/C/IRMS. Glucose alkylboronates were prepared by adding the appropriate alkylboronic acid (butyl- or methylboronic acid) in pyridine to desiccated glucose. The derivatisation was completed by reacting this with either (a) acetic anhydride or trifluoroacetic anhydride (acetate derivatives) or (b) bis(trimethylsilyl)trifluoroacetamide BSTFA (TMS derivatives). All six derivatives were assessed using GC/MS and (13)C GC/C/IRMS.Neither TMS derivative exhibited any signal intensity in the molecular ion, although a M-15 ion showed good agreement between experimental and theoretical data and, whilst still low in intensity, could be suitable for isotope work. Similarly, none of the acetate derivatives showed any intensity at the molecular ion although three key fragmentation series were identified. The most attractive sequence, initiated by the loss of 1,2 cyclic boronate, resulted in the main fragment ion of interest, m/z 240, corresponding to the fluorinated methylboronate derivate. Minimal carbon and hydrogen atoms are added to this derivative making it an excellent choice for stable isotope work, while proving suitable for analysis by both GC/MS and GC/C/IRMS.  相似文献   

11.
Through simulation experiments of atmospheric sampling, a method via 2,4-dinitrophenylhydrazine (DNPH) derivatization was developed to measure the carbon isotopic composition of atmospheric acetone. Using acetone and a DNPH reagent of known carbon isotopic compositions, the simulation experiments were performed to show that no carbon isotope fractionation occurred during the processes: the differences between the predicted and measured data of acetone-DNPH derivatives were all less than 0.5 per thousand. The results permitted the calculation of the carbon isotopic compositions of atmospheric acetone using a mass balance equation. In this method, the atmospheric acetone was collected by a DNPH-coated silica cartridge, washed out as acetone-DNPH derivatives, and then analyzed by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using this method, the first available delta13C data of atmospheric acetone are presented.  相似文献   

12.
This paper describes a methodological investigation of the use of gas chromatography/combustion/isotope ratio monitoring mass spectrometry (GC/C/IRMS) for the compound-specific stable isotope analysis of 13C-enriched compounds. Analysis of two 13C-enriched fatty acid methyl esters, possessing delta13C values of approximately 500 per thousand, at a range of concentrations, demonstrated that detectable responses, i.e. chromatographic peaks, could be observed in the 45/44 output even when the compound was present in such low abundance that no peak was observed in the m/z 44 ion chromatogram. A limit of detection, defined as the point at which the signal-to-background ratio was equal to 3, was calculated for two compounds and for both ion chromatograms. The limit of detection in the 45/44 chromatogram was found to be ca. 30 pg injected for methyl 13C-hexadecanoate and ca. 20 pg injected for methyl 13C-octadecanoate, whilst, in the m/z 44 ion chromatogram, detection limits were approximately 180 and approximately 200 pg, respectively. The delta13C value recorded for the analytes was found to be both inaccurate and imprecise below 5 ng of each component injected, although this would not represent a significant drawback in qualitative tracer-type experiments. In a further study of co-injected mixtures of labelled (approximately 500 per thousand) and unlabelled (natural abundance, -20 to -30 per thousand ) fatty acid methyl esters a significant within-run carryover effect was observed, where the isotope values recorded for compounds eluting immediately after enriched components were significantly affected. Whilst this would not affect qualitative results, quantitative data for mixtures containing enriched compounds should be considered with caution. The standards employed in this investigation were enriched to approximately 500 per thousand in 13C; however, these effects would probably be accentuated at higher levels of labelling and with other elements. The limit of detection work demonstrated the potential of GC/C/IRMS as a highly sensitive and selective detector with many possible applications.  相似文献   

13.
We report a method for determining plasma und urinary [(15)N]urea enrichments in an abundance range between 0.37 and 0.52 (15)N atom% (0-0.15 atom% excess (APE) (15)N) using a dimethylaminomethylene derivative. Compared with conventional off-line preparation and (15)N analysis of urea, this method requires only small sample volumes (0.5 ml of plasma and 25 microl of urine). The (15)N/(14)N ratio of urea derivatives was measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Two peaks were separated; one was identified by gas chromatography/mass spectrometry (GC/MS) as the complete derivatized urea. Calibration of the complete urea derivative was performed by linear regression of enrichment values of known standard mixtures. Replicate standard (6-465 per thousand delta(15)N) derivatizations showed a relative standard deviation ranging from 0.1 to 7%. In order to test the feasibility of the method, human subjects and rats ingested a single meal containing either 200 mg of [(15)N]glycine (95 AP (15)N) or 0.4 mg of [(15)N]-alpha-lysine (95 AP (15)N), respectively. Urine and plasma were collected at hourly intervals over 7 h after the meal intake. After (15)N glycine intake, maximum urinary urea (15)N enrichments were 330 and 430 per thousand delta(15)N (0.12 and 0.16 APE (15)N) measured by GC/C/IRMS, whereas plasma [(15)N]glycine enrichments were 2.5 and 3.3 APE (15)N in the two human subjects 2 h after the meal. (15)N enrichments of total urine and urine samples devoid of ammonia were higher enriched than urinary [(15)N]urea measured by GC/C/IRMS, reflecting the presence of other urinary N-containing substances (e.g. creatinine). In rats plasma urea (15)N enrichments were 15-20 times higher than those in urinary urea (10-20 per thousand delta(15)N). The different [(15)N]urea enrichments observed after ingestion of [(15)N]-labeled glycine and lysine confirm known differences in the metabolism of these amino acids.  相似文献   

14.
Compound-specific isotope analysis (CSIA) has been established as a useful tool in the field of environmental science, in particular in the assessment of contaminated sites. What limits the use of gas chromatography/isotope ratio mass spectrometry (GC/IRMS) is the low sensitivity of the method compared with GC/MS analysis; however, the development of suitable extraction and enrichment techniques for important groundwater contaminants will extend the fields of application for GC/IRMS. So far, purge and trap (P&T) is the most effective, known preconcentration technique for on-line CSIA with the lowest reported method detection limits (MDLs in the low microg/L range). With the goal of improving the sensitivity of a fully automated GC/IRMS analysis method, a commercially available P&T system was modified. The method was evaluated for ten monoaromatic compounds (benzene, toluene, para-xylene, ethylbenzene, propylbenzene, isopropylbenzene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, fluorobenzene) and ten halogenated volatile organic compounds (VOCs) (dichloromethane, cis-1,2-dichloroethene, trans-1,2-dichloroethene, carbon tetrachloride, chloroform, 1,2-dichloroethane, trichloroethene, tetrachlorethene, 1,2-dibromoethane, bromoform). The influence of method parameters, including purge gas flow rates and purge times, on delta13C values of target compounds was evaluated. The P&T method showed good reproducibility, high linearity and small isotopic fractionation. MDLs were determined by consecutive calculation of the delta13C mean values. The last concentration for which the delta13C value was within this iterative interval and for which the standard deviation was lower than +/-0.5 per thousand for triplicate measurements was defined as the MDL. MDLs for monoaromatic compounds between 0.07 and 0.35 microg/L are the lowest values reported so far for continuous-flow isotope ratio measurements using an automated system. MDLs for halogenated hydrocarbons were between 0.76 and 27 microg/L. The environmental applicability of the P&T-GC/IRMS method in the low-microg/L range was demonstrated in a case study on groundwater samples from a former military air field contaminated with VOCs.  相似文献   

15.
A gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) method is described and validated for measurement of delta(13)C values of the acetate derivatives of urinary etiocholanolone and androsterone. The analysis was performed with only 2 mL of urine. The sample preparation consisted of deconjugation with beta-glucuronidase, solid phase extraction, and derivatization with acetic anhydride and pyridine. The within-assay precision of two quality control (QC) urine samples ranged from 0.5 to 2.1 CV%. The between-assay precision in the same QC urines ranged from 1.7 to 3.4 CV%. Administration of testosterone enanthate to a subject resulted in a 6 per thousand decrease in delta(13)C values from -25 per thousand (baseline) to -31 per thousand. Two weeks after testosterone administration was discontinued, the delta(13)C values remained abnormally low while the urine testosterone/epitestosterone (T/E) ratio returned to less than 6. This relatively simple method is useful for rapidly screening a large number of urine samples, including those with T/E <6.  相似文献   

16.
A simple and rapid method to measure naturally occurring delta(13)C values of headspace CO(2) of sparkling drinks has been set up, using direct injections on a gas chromatograph coupled to an isotope ratio mass spectrometer, through a combustion interface (GC/C/IRMS). We tested the method on CO(2) gas from several origins. No significant isotopic fractionation was observed nor influences by secondary compounds eventually present in the gas phase. Standard deviation for these measurements was found to be <0.1 per thousand.  相似文献   

17.
This study investigates the effects of hydrolysis on the delta13C values of individual amino acids (IAAs) derived from polypeptide standards, and modern and ancient bone collagen. All IAAs were derivatised to their trifluoroacetyl/isopropyl (TFA/IP) esters for delta13C determination using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Firstly, authentic single poly amino acid standards (SPAAs; n = 5) were hydrolysed for 4, 10, 24 and 48 h. As expected, IAA yields increased as a function of hydrolysis time. Significantly, it was only after 24 h of hydrolysis that IAA delta13C values were statistically identical to bulk SPAA values for all five standards. The accuracy of IAA delta13C values was thus shown to be a function of yield; however, poly phenylalanine demonstrated accurate IAA delta13C values with yields of only 1.4 and 4.3%, after 24 and 48 h of hydrolysis time, respectively. Authentic mixed poly amino acid standards (MPAAs; n = 5) comprising two different amino acids were then hydrolysed for 24 h. Percentage recoveries ranged from 36-95%. Estimates of bulk MPAA delta13C values calculated from measured IAA delta13C values agreed within experimental error with measured bulk MPAA values for three out of the five standards. Finally, the experimental procedure was applied to modern rat (MBCs; n = 20) and ancient ovi-caprine and bovine (ABCs; n = 27) bone collagen samples where the delta13C values of 12 out of its 18 constituent amino acids were determined. Estimated bulk MBC and ABC delta13C values were calculated from constituent amino acid delta13C values using mass balance. With the exclusion of three ABC samples, calculated bulk bone collagen delta13C values (delta13C(BCcal)) were shown to correlate extremely well with measured bone collagen values (delta13C(BCmes)) for both modern and ancient samples, where R2 = 0.91 and 0.84, respectively. Significantly, the variation between calculated and measured bone collagen values (Delta13C(BCcal-BCmes)) exhibited similar ranges for both MBC (from -2.6 to +1.2 per thousand ) and ABC (from -2.7 to +2.2 per thousand ) samples, providing evidence for the preservation of intact collagen in the ancient samples. These results demonstrate that the experimental procedures employed in the acid hydrolytic cleavage of peptides or proteins to their constituent amino acids does not involve significant isotopic fractionation.  相似文献   

18.
Comparative analysis involves various but complementary methods and can be used for forensic intelligence purposes to group seizures of heroin into batches. Much forensic analysis now combines expertise in the traditional area of drugs investigation with a detailed understanding of supply, packaging, distribution, and drugs intelligence. It was the intention of this research to determine whether illicit heroin seizures and packaging material can be grouped according to isotopic compositions, and to explore factors that affect the isotopic compositions. In order to achieve these aims, 14 samples of seized heroin, thirteen provided by Avon and Somerset Constabulary (UK), were analysed by elemental analysis/isotope ratio mass spectrometry (EA/IRMS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) for carbon and hydrogen isotopes. These tests elucidated that a combination of the delta13C, delta15N, delta18O and delta2H results from EA/IRMS is able to distinguish between most samples of bulk heroin. We speculate that the delta13C values of the alkaloids, obtained by GC/C/IRMS, give indications of different geographical or temporal origins of some of the heroin samples. GC/C/IRMS of the cutting agent, caffeine, provides a means to link dilution events. Fifteen retail cling film samples and seven cling film samples from heroin seizures were analysed by EA/IRMS. A multivariate comparison of the carbon, hydrogen and oxygen isotope ratios was able to distinguish between most of the samples. This technique enabled the cling films from the heroin to be grouped according to seizure. Three solvents were tested on two samples of cling film of known composition. Methanol and chloroform were both found to extract material from PVC and from non-PVC cling films. Water-treated PVC was indistinguishable from the untreated PVC and thus water was found to be the most suitable solvent when washing cling film prior to IRMS analysis.  相似文献   

19.
In archaeological studies, the isotopic enrichment values of carbon and nitrogen in bone collagen give a degree of information on dietary composition. The isotopic enrichments of individual amino acids from bone collagen and dietary protein have the potential to provide more precise information about the components of diet. A limited amount of work has been done on this, although the reliability of these studies is potentially limited by fractionation arising through hydrolysis of whole plant tissue (where reaction between amino acids and carbohydrates may occur) and, for certain amino acids, the use of derivatives (particularly trifluoroacetyl derivatives) for gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. The present study takes the approach of extracting the protein components of plant tissues before hydrolysis and using liquid chromatography/isotope ratio mass spectrometry (LC/IRMS), which does not require derivatisation, for measurement of the isotopic enrichment of the amino acids. The protocol developed offers a methodology for consistent measurement of the δ(13)C values of amino acids, allowing isotopic differences between the individual amino acids from different plant tissues to be identified. In particular, there are highly significant differences between leaf and seed protein amino acids (leaf minus grain) in the cases of threonine (-4.1‰), aspartic acid (+3.5‰) and serine (-3.2‰). In addition to its intended application in archaeology, the technique will be of value in the fields of plant sciences, nutrition and environmental food-web studies.  相似文献   

20.
Carbohydrate is an important pool in the terrestrial carbon cycle. The potential offered by natural and artificial 13C-labelling techniques should therefore be applied to the investigation of the dynamics of individual sugars in soils. For this reason, we evaluated the method of 13C sugar analysis by gas chromatography/combustion/isotope-ratio mass spectrometry (GC/C/IRMS) after hydrolysis and direct trimethylsilylation. Trimethylsilylation involved the addition of several carbon atoms per sugar. These atoms have to be taken into account in the estimation of the carbon isotope ratio. The analysis of standard and natural pentoses and hexoses of known 13C enrichments revealed that the number of analysed added carbon atoms was less than expected from stoichiometry. This was attributed to incomplete derivatization and/or incomplete oxidation of methylsilyl carbon before IRMS. Using a calibration of the number of analysed added carbon atoms, the isotope excess of enriched samples could be determined with a relative error close to 5%. Concerning the determination of natural abundances by GC/C/IRMS, we could measure the delta 13C of standard C3- and C4-derived sugars with an accuracy of +/-1.5 per thousand using the previous calibration. We were able to apply this technique to plant-soil systems labelled by pulse-chase of 13CO2, revealing the nature and dynamics of sugars in the plant rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号