首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vapor–liquid equilibria (VLE) and excess enthalpies (HE) were measured for a variety of alkanes, alkenes, aromatics, alcohols, ketones and water in several ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM]+[BTI], 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [BMIM]+[BTI], 1-hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [HMIM]+[BTI] and 1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [OMIM]+[BTI], covering the temperature range from 323.15 to 413.15 K. The new data were used together with the already available experimental data for imidazolium compounds to fit the required group interaction parameters for modified UNIFAC (Dortmund). The results show that in the future modified UNIFAC (Dortmund) can be applied successfully also for systems with ionic liquids.  相似文献   

2.
Activity coefficients at infinite dilution (γ), vapor–liquid equilibria (VLE) and excess enthalpies (HE) were measured for alkanes and alkenes in the ionic liquids 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [BMPYR]+[BTI], 1-hexyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [HMPYR]+[BTI] and 1-octyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [OMPYR]+[BTI].  相似文献   

3.
In this communication, we demonstrate the solute–solvent and solvent–solvent interactions in the binary mixtures of two aprotic ionic liquids, namely 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, with the protic ionic liquid 1-methylimidazolium acetate. The synergistic effects as expressed by the solvatochromic parameter are noted. This observation is in contrast to the mixing of protic ionic liquids 1-methylpyrrolidium acetate and 4-methylmorpholine acetate with 1-methylimidazolium acetate, respectively. It appears that the synergistic effects in the binary mixtures of aprotic and protic ionic liquids are caused by the formation of hydrogen bonds, since cations are dominant H-bond donors while anions are dominant H-bond acceptors. Preferential solvation models are used to describe the solute–solvent interactions in the binary ionic liquid mixtures.  相似文献   

4.
Vapor–liquid equilibria (VLE) for the binary systems benzene–cyclohexane, 1-hexene–n-hexane and 2-propanol–water and the ternary systems with the ionic liquids 1-hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [HMIM]+[BTI] and 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [BMPYR]+[BTI] as entrainers were measured, to investigate the influence of ionic liquids on the separation factors. The experimental data were compared with the predicted results using mod. UNIFAC (Do). The predicted results are in good agreement with the experimental data.  相似文献   

5.
Vapour–liquid equilibrium measurements for binary and ternary systems containing carbon dioxide, 1-propanol, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids are presented in this work. The binary CO2 + 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide system at 313.15 K at pressure range from 2 to 14.4 MPa was examined. The obtained phase envelop shows that even at low pressure of CO2 the solubility of the gas in the ionic liquid is high. The ternary phase equilibria were studied at 313.15 K and pressures in the range from 9 to 12 MPa. The ternary phase diagrams show that higher CO2 pressure diminishes the miscibility gap.  相似文献   

6.
《Fluid Phase Equilibria》2005,227(2):255-266
For the first time vapor–liquid equilibrium (VLE) data for ternary systems containing ionic liquids are reported. The data were measured by means of a computer-operated static VLE apparatus at 353.15 K with the ionic liquids 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [EMIM]+[(CF3SO2)2N] and 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [BMIM]+[(CF3SO2)2N] and acetone, 2-propanol and water. The experimental VLE data of the binary systems were correlated using the Wilson, NRTL and UNIQUAC models. The errors using Wilson, NRTL, and UNIQUAC are 3.92%, 1.45%, and 1.53%. The gE-model parameters of the binary systems were used to predict the VLE behavior of the ternary systems and the predictions were compared to the experimental datasets. The errors using Wilson-, NRTL-, and UNIQUAC-parameters are 5.61%, 7.22%, and 5.02%.  相似文献   

7.
Yields of H2 produced by electron beam irradiation were investigated in a series of room-temperature ionic liquids comprising 1-hexyl-3-methylimidazolium, 1-hexyl-4-(dimethylamino)pyridinium, 1-butyl-1-methylpyrrolidinium, triethylammonium or trioctyl(tetradecyl)phosphonium cations associated with bis(trifluoromethylsulfonyl)imide anion. The G(H2) values ranged from 2.6×10−8 mol/J for the imidazolium and pyridinium-based ionic liquids to 2.5×10−7 mol/J for the phosphonium liquid. These results correlate well with yields of gaseous hydrogen in studies of nonionic aliphatic and aromatic organic compounds.  相似文献   

8.
The osmotic and activity coefficients and vapour pressures of binary mixtures containing 1-propanol, or 2-propanol and imidazolium-based ionic liquids with bis(trifluoromethylsulfonyl)imide as anion (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C2MimNTf2, 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, C3MimNTf2, and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C4MimNTf2) were determined at T = 323.15 K using the vapour pressure osmometry technique. The experimental osmotic coefficients were correlated using the extended Pitzer model modified by Archer and the MNRTL model, obtaining standard deviations lower than 0.033 and 0.064, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the mixtures studied were calculated from the parameters of the extended Pitzer model modified by Archer. Besides the effect of the alkyl-chain of the cation, the effect of the anion can be assessed comparing the experimental results with those previously obtained for imidazolium ionic liquids with sulphate anions.  相似文献   

9.
(Liquid + liquid) equilibrium data for the ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMim][NTf2], 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf2], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMim][NTf2], and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [HMim][NTf2], mixed with ethanol and heptane were studied at T = 298.15 K and atmospheric pressure. The ability of these ionic liquids as solvents for the extraction of ethanol from heptane was evaluated in terms of selectivity and solute distribution ratio. Moreover, density and refractive index values over the miscible region for the ternary mixtures were also measured at T = 313.15 K. Finally, the experimental data were correlated with the Non Random Two Liquids (NRTL) and UNIversal QUAsi Chemical (UNIQUAC) thermodynamic models, and an exhaustive comparison with available literature data of the studied systems was carried out.  相似文献   

10.
(Solid + liquid) and (liquid + liquid) phase equilibria of binary mixtures containing various ionic liquid and erythromycin were studied. The solubility of erythromycin in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, or 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, or trihexiltertadecilphosphonium chloride, or butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, or methyltrioctylammonium bis(trifluoromethylsulfonyl)imide, or 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide has been measured by a dynamic method, in a wide range of temperatures from (284 to 358) K, at atmospheric pressure. The activity coefficients of erythromycin in ionic liquids were calculated and their comparison with ideal solution was discussed. The experimental data were correlated successfully by means of the semi-empirical Grant equation.  相似文献   

11.
A new group of room temperature ionic liquids based on triethylalkylphosphonium cations together with a bis(trifluoromethylsulfonyl)imide anion as a novel electrolyte is presented in this report. It was found that phosphonium ionic liquids showed lower viscosities and higher conductivities than those of the corresponding ammonium ionic liquids. Particularly, phosphonium ionic liquids containing a methoxy group, triethyl(methoxymethyl)phosphonium bis(trifluoromethylsulfonyl)imide and triethyl(2-methoxyethyl)phosphonium bis(trifluoromethylsulfonyl)imide, exhibited quite low viscosities (35 and 44 mPa s at 25 °C, respectively). Linear sweep voltammetry measured in neat phosphonium ionic liquids at a glassy carbon electrode indicated wide potential windows (at least −3.0 to +2.3 V vs. Fc/Fc+). Thermogravimetric analysis suggested that phosphonium ionic liquids were thermally stable up to nearly 400 °C, showing slower gravimetric decreases at high temperature compared to those of the corresponding ammonium ionic liquids.  相似文献   

12.
The volumetric properties of seven {water + ionic liquid} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich–Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([C1C4Im][BF4]) and 1-ethyl-3-methylimidazolium ethylsulfate ([C1C2Im][EtSO4])) and five ionic liquids only partially miscible with water (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C1C2Im][NTf2]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C1C4Im][NTf2]), 1-butyl-3-methylimidazolium hexafluorophosphate ([C1C4Im][PF6]), 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C1C4Pyrro][NTf2]), and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N4111][NTf2])) were chosen. Small excess volumes (less than 0.5 cm3 · mol?1 at 298 K) are obtained compared with the molar volumes of the pure components (less than 0.3% of the molar volume of the pure ionic liquid). For all the considered systems, except for {[C1C2Im][EtSO4] + water}, positive excess molar volumes were calculated. Finally, an increase of the non-ideality character is observed for all the systems as temperature increases.  相似文献   

13.
A facile approach of polypyrrole (PPy)/tungsten oxide (WO3) composites electrosynthesized in ionic liquids for fabrication of electrochromic devices is discussed. The electrochromic properties of PPy/tungsten oxide nanocomposite films (PPy/WO3) prepared in the presence of four different ionic liquids, 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMIMBF4), 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6), 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI), and 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI) were investigated in detail. Cyclic voltammetry results revealed that PPy/WO3 nanocomposite films have much more electrochemical activity than those of WO3 and PPy film. The electrochromic contrast, coloration efficiency, and switching speed of the composite films were determined for electrochromic characteristics. The maximum contrast and the maximum coloration efficiency values were measured as 33.25% and 227.89 cm2/C for the PPy/WO3/BMIMTFSI composite film. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The complex formed by the reaction of the uranyl ion, UO22+, with bromide ions in the ionic liquids 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Bmim][Tf2N]) and methyl-tributylammonium bis(trifluoromethylsulfonyl)imide ([MeBu3N][Tf2N]) has been investigated by UV–Vis and U LIII-edge EXAFS spectroscopy and compared to the crystal structure of [Bmim]2[UO2Br4]. The solid state reveals a classical tetragonal bipyramid geometry for [UO2Br4]2− with hydrogen bonds between the Bmim+ and the coordinated bromides. The UV–Vis spectroscopy reveals the quantitative formation of [UO2Br4]2− when a stoichiometric amount of bromide ions is added to UO2(CF3SO3)2 in both Tf2N-based ionic liquids. The absorption spectrum also suggests a D4h symmetry for [UO2Br4]2− in ionic liquids, as previously observed for the [UO2Cl4]2− congener. EXAFS analysis supports this conclusion and demonstrates that the [UO2Br4]2− coordination polyhedron is maintained in the ionic liquids without any coordinating solvent or water molecules. The mean U–O and U–Br distances in the solutions, determined by EXAFS, are, respectively, 1.766(2) and 2.821(2) Å in [Bmim][Tf2N], and, respectively, 1.768(2) and 2.827(2) Å, in [MeBu3N][Tf2N]. Similar results are obtained in both ionic liquids indicating no significant influence of the ionic liquid cation either on the complexation reaction or on the structure of the uranyl species.  相似文献   

15.
Five ionic imidazolium based monomers, namely 1‐vinyl‐3‐ethylimidazolium bis(trifluoromethylsulfonyl)imide (ILM1), 1‐vinyl‐3‐(diethoxyphosphinyl)‐propylimidazolium bis(trifluoromethylsulfonyl)imide (ILM2), 1‐[2‐(2‐methyl‐acryloyloxy)‐propyl]‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (ILM3), 1‐[2‐(2‐methyl‐acryloyloxy)‐undecyl]‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (ILM4), 1‐vinyl‐3‐ethylimidazolium dicyanamide (ILM5) were prepared and used for the synthesis of linear polymeric ionic liquids (PILs), crosslinked networks with polyethyleneglycol dimethacrylate (PEGDM) and interpenetrating polymer networks (IPNs) based on polybutadiene (PB). The ionic conductivities of IPNs prepared using an in situ strategy were found to depend on the ILM nature, Tg and the ratio of the other components. Novel ionic IPNs are characterized by increased flexibility, small swelling ability in ionic liquids (ILs) along with high conductivity and preservation of mechanical stability even in a swollen state. The maximum conductivity for a pure IPN was equal to 3.6 × 10?5 S/cm at 20 °C while for IPN swollen in [1‐Me‐3‐Etim] (CN)2N σ reached 8.5 × 10?3 S/cm at 20 °C or 1.4 × 10?2 S/cm at 50 °C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4245–4266, 2009  相似文献   

16.
During recent last years, outstanding properties of ionic liquids such as low melting point, large liquid range and negligible volatility have turned them into possible volatile organic solvents replacers to break alcohol-alkane azeotropic mixtures. On this basis, two ionic liquids, butyltrimethylammoniumbis(trifluoromethylsulfonyl)imide, [BTMA][NTf2], and tributylmethylammoniumbis(trifluoromethylsulfonyl)imide, [TBMA][NTf2], were studied through ternary liquid+liquid equilibrium (LLE) of {alkane(1) + alcohol (2) + IL(3)} at T = 298.15 K and atmospheric pressure in order to consider the effect of ionic liquid cation alkyl chain length on the extraction process.The ILs capability as azeotrope breakers was determined by the calculation of parameters such as solute distribution ratio, β, and selectivity, S and this capability was compared with other bis (trifluoromethylsulfonyl)imide based ionic liquids from literature. The consistency of tie-line data was ascertained by applying the Othmer–Tobias and Hand equations. Finally, the experimental LLE were correlated by the Non Random Two Liquid (NRTL) thermodynamic model.  相似文献   

17.
This paper studied application of different types of room temperature ionic liquids (RTILs) into flexible supercapacitors. Typical RTILs including 1-buthyl-3-methyl-imidazolium [BMIM][Cl], trioctylmethylammonium bis(trifluoromethylsulfonyl)imide [OMA][TFSI] and triethylsulfonium bis(trifluoromethylsulfonyl)imide ([SET3][TFSI]) were studied. [SET3][TFSI] shows the best result as electrolyte in electrochemical double-layer (EDLC) supercapacitors with very high specific capacitance of 244 F/g at room temperature, overceiling the performance of conventional carbonate electrolyte such as dimethyl carbonate (DMC) with more stable performance and much larger electrochemical window.  相似文献   

18.
Abstract

We show that the superoxide ion (O2 ??) generated electrochemically from oxygen dissolved in room-temperature ionic liquids (RTILs) reacts with primary and secondary alcohols to form the corresponding ketones and carboxylic acids, respectively. Specifically, we study the conversion of benzhydrol to benzophenone and benzyl alcohol to benzaldehyde/benzoic acid. The kinetics (e.g., rate, selectivity, and yield) for these reactions are also determined as functions of the variations in the structure of the ionic liquids. The RTILs used here are imidazolium-based cations where the functional groups on the imidazolium ring are modified. Specifically, 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6], 1-butyl-2,3-dimethylimidazolium hexafluorophosphate [bdmim][PF6], and 1-hexyl-3-methylimidazolium hexafluorophosphate [hmim][PF6] are used as the reaction medium. These results are compared to an ammonium-based RTIL (N-butyl-N-trimethylammonium bis(trifluoromethylsulfonyl)imide). The results show that the nucleophilic attack by the O2 ?? of both the RTIL and the alcohol, especially that of the H atom at the R2 position of the [bmim][PF6] and [hmim][PF6], greatly affects the yields. No RTIL degradation products were detected for the reactions in [bdmim][PF6] and N-butyl-N-trimethylammonium bis(trifluoromethylsulfonyl)imide ionic liquids. For the benzyl alcohol oxidation reaction in the RTIL, N-butyl-N-trimethylammonium bis(trifluoromethylsulfonyl)imide, benzaldehyde formed did not undergo further oxidation to form benzoic acid, which may be due to the greater hydrophobicity of this RTIL. The competitive reaction kinetics between the alcohol and RTIL component must be considered in the selection of the RTIL solvent system.  相似文献   

19.
The potentialities of new ionic liquids (ILs) based on choline were evaluated as an electrophoretic medium in capillary electrophoresis for the analysis of alkaline and alkaline earth cations (Li+, K+, Na+, Cs+, Mg2+, Ba2+, Ca2+, and Sr2+) with indirect UV detection. Two types of capillaries were tested: an untreated fused silica and fused silica coated with a film of polyvinylalcohol. The coated capillary proved to be the best adapted for the metal ions studied. Moreover, it appeared that the nature of the ionic liquid anion influenced the baseline stability, and the bis(trifluoromethylsulfonyl) imide (NTf2 ) anion seemed to be the most efficient. These preliminary studies led us to synthesize a new ionic liquid, 2-hydroxy-N,N,N-trimethyl-1-phenylethanaminium NTf2 (phenylcholine NTf2). This liquid was able to act as the running electrolyte and probe, generating the background signal in indirect UV light and consequently simplifying the electrophoretic medium. Excellent baseline stability, good reproducibility, as well as good sensitivity of detection were obtained with this new ionic liquid. Thus, 510,000 plates/meter for Li+ with 40 mM IL were successfully obtained. The optimal concentration of IL was 20 mM with a detection limit ranging from 28 μg L−1 for Li+ to 1,000 μg L−1 for Cs+. This method (phenylcholine NTf2 with polyvinylalcohol capillary) was applied to analyze different commercial source and mineral waters. Finally, the potentiality of this ionic liquid in nonaqueous capillary electrophoresis was explored. The use of phenylcholine NTf2 with a fused silica capillary, in pure methanol medium and in the presence of acetic acid, made it possible to obtain separation selectivity different from that obtained in aqueous medium.  相似文献   

20.
Infinite dilution activity coefficients and gas-to-ionic liquid partition coefficients were measured for a chemically diverse set of 48 or more organic solute probes dissolved in the ionic liquids 1-benzylpyridinium bis(trifluoromethylsulfonyl)imide ([BzPy][Tf2N]) and 1-cyclohexylmethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([ChxmPyrr][Tf2N]) in the temperature range from 323.15 to 373.15 K using inverse gas chromatography. Selectivities and capacities for different separation problems were calculated from the measured chromatographic data. The measured partition coefficients were correlated using mathematical equations based on the Abraham general solvation parameter model. The derived Abraham model correlations back-calculated the observed partition coefficients to within 0.12 log10 units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号