首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
A novel blue light-emitting polyfluorene-based copolymer PTHD containing electron-rich triphenylamine and electron-poor phenylquinoline side chains in the C-9 position of fluorene unit is described. By comparison of the solution and thin film photoluminescence (PL) spectra of PTHD, a considerable red-shift of Δλ = 10-15 nm was observed in the thin film PL spectrum. The emission intensity of the shoulder peak appeared in dilute solution was also significantly enhanced in the thin film. In contrast to the reference polymer poly{[9,9-dihexylfluorene]-alt-[9,9-di(2,4-diphenylquinoline)fluorene]}, PTHD exhibits higher HOMO energy level, and higher maximum brightness with the PLED device configuration of ITO/PEDOT:PSS/polymer70% + PBD30%/TPBI/LiF/Al.  相似文献   

2.
Phosphorescent heavy metal complexes can utilize both singlet and triplet excitons and thus are interesting for doping polymer to obtain highly efficient organic light-emitting diodes. In this study, we have investigated devices using a new phosphorescent–metal complex containing fluorene and platinum added to a luminescent polymer blend, composed of 2-(4-biphenylyl)-5-(4-tert-butyl-phenyl)-(1,3,4-oxadiazole) (PBD) and poly(9-vinylcarbazole) (PVK). The performance of devices (luminance and yield) is measured in indium tin oxide (ITO)/poly(3-4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/(PVK–PBD-complex)/Al diodes. The devices emit an orange light with a brightness of 607 cd/m2 and an external quantum efficiency of 0.28 cd/A at 25 V. In order to investigate the structural modifications of the polymer by the incorporation of phosphorescent–metal complex, we have studied the defect states in diodes by charge-based Deep Level Transient Spectroscopy (Q-DLTS). Analysis of Q-DLTS spectra obtained in undoped and doped devices, revealed at least three trap levels distributed in the range 0.2–0.5 eV within the band gap of the hybrid composite with trap density in the range around 1016 cm?3. Incorporation of Pt complex into the polymer blend modified the trap states by reducing the density of traps in the blend and by creating new trap levels in the band gap.  相似文献   

3.
烷基芴与三苯胺取代-3,6-芴共聚物的合成及其性能   总被引:1,自引:1,他引:0  
用Suzuki偶联反应制备了一系列新型的9,9-二辛基-2,7-芴(DOF)与9,9-二(4-二苯胺基苯基)-3,6-芴(36FT)的共聚物. 所有的聚合物均可溶于常见的有机溶剂(如THF, CHCl3和甲苯等), 分子量在47000~189000之间. 电化学研究结果表明, 所有聚合物的HOMO能级都高于均聚烷基芴, 并且随着36FT含量的增加, HOMO值逐渐上升. 以该类聚合物为发光层制作了结构为ITO/PEDOT/PVK/polymer/Ba/Al的器件, 获得了稳定的蓝光发射, 其中以36PFT10为发光层的器件获得了0.52%的最大外量子效率.  相似文献   

4.
采用Suzuki缩聚反应制备了以铱配合物为核、3,6-咔唑为枝的超支化电磷光聚合物(PCzIrMppy1和PCzIrMppy3). 超支化聚合物PCzIrMppy3的光致发光量子效率为62%, HOMO能级为-5.22 eV, 接近阳极ITO/PEDOT∶PSS的能级(-5.20 eV), 表明其优异的空穴注入性能. 以PCzIrMppy3聚合物为发光层制备的绿光电磷光电致发光器件ITO/PEDOT∶PSS/Emissive layer/CsF/Al的最大电流效率为10.4 cd/A, 最大亮度为34758 cd/m2. 此外, 器件的效率随电流密度的衰减较慢, 说明这种超支化结构可有效减少高电流密度下的浓度猝灭.  相似文献   

5.
Tao Y  Yang C  Qin J 《Chemical Society reviews》2011,40(5):2943-2970
Phosphorescent organic light-emitting diodes (PhOLEDs) unfurl a bright future for the next generation of flat-panel displays and lighting sources due to their merit of high quantum efficiency compared with fluorescent OLEDs. This critical review focuses on small-molecular organic host materials as triplet guest emitters in PhOLEDs. At first, some typical hole and electron transport materials used in OLEDs are briefly introduced. Then the hole transport-type, electron transport-type, bipolar transport host materials and the pure-hydrocarbon compounds are comprehensively presented. The molecular design concept, molecular structures and physical properties such as triplet energy, HOMO/LUMO energy levels, thermal and morphological stabilities, and the applications of host materials in PhOLEDs are reviewed (152 references).  相似文献   

6.
Huang C  Zhen CG  Su SP  Loh KP  Chen ZK 《Organic letters》2005,7(3):391-394
[structure: see text] Novel solution-processable blue light-emitting materials Blue A-D, bearing a polyphenylphenyl dendron, have been synthesized and characterized. The energy levels and band gaps can be facilely tuned by changing the central aromatic ring of the molecules. A highly efficient deep blue light-emitting OLED device based on Blue C with a maximum current efficiency of 2.2 cd/A has been achieved using PVK as the host material through a solution process.  相似文献   

7.
A series of random conjugated copolymers (PFO-HBT) derived from 9,9-dioctylfluorene (DOF) and 2-hexylbenzotriazole (HBT) is prepared by the palladium-catalyzed Suzuki coupling reaction with the feed HBT molar ratio around 1%, 5% and 15%. By copolymerizing 2-hexylbenzotriazole into the backbone of polyfluorene, an efficient colorfast blue light-emitting polymer system is developed. The device with the structure of ITO (indium tin oxide)/PEDOT/PVK/PFO-HBT1/Ba/Al exhibits the highest external quantum efficiency 1.62% with luminance efficiency of 2.69 cd/A, power efficiency of 1.25 lm/W and the CIE coordinates of (0.15, 0.17). The EL spectra are stable at the increased current density and continuous operation without significant change of CIE.  相似文献   

8.
This paper reports the synthesis and physical properties of two novel carbazole-based dendritic host materials Cz-CCP and Cz-mCP for solution-processed blue phosphorescent organic light-emitting devices (PhOLEDs). These dendritic hosts exhibit high triplet energy (≥2.85 eV), excellent film-forming ability (with low root-mean-square (rms) values less than 0.2 nm), high glass-transition temperatures in the range of 242–248 °C, and the appropriate HOMO energy levels (?5.33–?5.35 eV) facilitating the transfer of holes from Poly(3,4-ethylenedioxythiophene):Poly(styrene-4-sulfonate) (PEDOT:PSS) to the emitting layer. The single-layer device using Cz-CCP and Cz-mCP as the host for the phosphorescence emitter iridium(III) bis(4,6-difluorophenylpyridinato)-picolinate (FIrpic) showed the maximum luminance efficiencies of 9.6 and 10.8 cd A?1, respectively. By introducing a thin 1,3,5-tris(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene (TPBI) electron-transporting and exciton-confining layer, the maximum efficiency of the solution-processed double-layer device based on Cz-CCP and Cz-mCP can be further improved to 20.5 and 22.7 cd A?1, and maximum external quantum efficiencies as high as 10.2% and 11.5%, respectively. These results demonstrated that the newly synthesized, carbazole-based dendritic host materials are advantageous for fabrication of highly efficient blue PhOLEDs.  相似文献   

9.
Novel blue light-emitting poly(aryl ether)s comprising of bipolar oligofluorene pendants as chromophores have been designed and synthesized,in which pyrimidine and arylamine moieties are utilized as the electron acceptor and electron donor,respectively.Through varying π bridge length from monofluorene to bifluorene and end-cappers from hydrogen to carbazole and diphenylamine,the emission color of the resulting polymers covers from deep blue to greenish blue,and their HOMO and LUMO levels can be modulated to facilitate charge injection to improve the device performance.Polymer lightemitting diodes(PLEDs) are fabricated with the device structure of ITO/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)(PEDOT:PSS)(50 nm)/polymer(80 nm)/Ca(10 nm)/Al(200 nm).Among these polymers,P2Cz5F-Py with bifluorene bridge and carbazole end-capper shows excellent trade-off between the efficiency and emission wavelength,having a peak luminous efficiency as high as 1.26 cd/A and Commission Internationale de L’Eclairage(CIE) coordinates of(0.17,0.17).  相似文献   

10.
采用Suzuki偶合反应合成了一系列新型的咔唑、芴和2,1,3-苯并硒二唑的共聚物——聚[3,6-(N-(2-乙基己基))咔唑-2,1,3-苯并硒二唑-9,9-双(N,N-二甲基胺丙基)芴](PCzN-BSeD)及其相应的聚电解质衍生物——聚[3,6-(N-(2-乙基己基))咔唑-2,1,3-苯并硒二唑-9,9-(双(3′-(N,N-二甲基)-N-乙基铵)丙基)芴]二溴(PCzNBr-BSeD).在聚咔唑和芴中引入不同比例的2,1,3-苯并硒二唑(BSeD)单元,引起了由咔唑和芴链段向窄带隙苯并硒二唑(BSeD)单元有效的能量转移.通过对聚合物电致发光性能的研究,发现用聚(3,4-亚乙基二氧基噻吩)(PEDOT)或聚(3,4-亚乙基二氧基噻吩)/聚乙烯咔唑(PEDOT/PVK)作为空穴传输层时,器件的性能相差不大,表明咔唑的引入较明显的改善了聚合物的空穴注入性能.而且几乎所有的聚合物用高功函数铝作阴极的器件和用钡/铝作阴极的器件具有相近的发光性能,表明这类聚合物具有良好的电子注入性能.  相似文献   

11.
We introduced a spin-assembled nanolayer of hyperbranched poly(ether sulfone) with sulfonic acid terminal on top of an indium-tin oxide anode in organic light-emitting diodes. This results in great improvement in luminous efficiency, better than that of devices using a commercially available conducting polymer composition as a hole-injection layer. The effect of the nanolayer was investigated by impedance spectroscopy, photovoltaic measurement for built-in-potential, and transient electroluminescence. We concluded that the high luminous efficiency resulted from the efficient electron-blocking by the nanolayer and hole-injection assisted by the accumulation of electrons at the interface. This result implies that, for an efficient hole-injection layer, the electron-blocking capability should be incorporated in addition to the hole-injection and -transport capability.  相似文献   

12.
Polymeric light-emitting diodes (PLEDs) using high-performance hole-transport polyurethanes (PUs) have been fabricated. The PUs were prepared from the condensation polymerization of (EE)-1,4-bis(2-hydroxystyryl)benzene, an oligo para-phenylene-(E)-vinylene (OPV) unit, with toluene diisocyanate (TDI), isophorone diisocyanate (IPDI) or dicyclohexylmethane 4,4′-diisocyanate (H12MDI), respectively. The condensation polymerization was end-capped with 4-tert-butylphenol as the terminal group. The PLED having the PU layer inserted between PEDOT:PSS (HIL) and MEH-PPV (EML) demonstrated superior current efficiency and low turn-on voltage when comparing to the reference devices of ITO/MEH-PPV(50 nm)/Ca(10 nm)/Ag(100 nm) as well as ITO/PEDOT:PSS(30 nm)/MEH-PPV(50 nm)/Ca(10 nm)/Ag(100 nm). In particularly, the best device performance was realized with the PU of OPV-IPDI as the hole-transport layer, resulting 53 times and 2.72 times of current efficiency enhancement as well as 1.5 V and 1 V voltage reduction of the turn-on voltage, respectively, when compared against the reference devices. Besides, our experiments also showed that the PU polymer could also be applied for flexible PLED with similar performance enhancement. Based on the promising results, we concluded that OPV-IPDI was a good hole-transport material for light-emitting diode application.  相似文献   

13.
A new aromatic host polymer poly{[1,4‐bis(9‐decylcarbazole‐3‐yl)‐2,3,5,6‐tetrafluorobenzene‐3,3′‐diyl]‐alt‐[N‐methylisatin‐2‐one‐3,3‐diyl]} (PICzFB) containing carbazole–tetrafluorinebeneze–carbazole moiety in the π‐conjugated interrupted polymer backbone was synthesized by superacid‐catalyzed metal‐free polyhydroxyalkylation. The resulted copolymer PICzFB showed a comparatively wide band gap up to 3.32 eV and high triplet energy (ET) of 2.73 eV due to confined conjugation by the δ? C bond interrupted polymer backbone. Blue and green light‐emitting devices with PICzFB as host, FIrpic and Ir(mppy)3 as phosphorescent dopants showed the maximum luminous efficiencies of 5.0 and 27.6 cd/A, respectively. The results suggested that the strategy of incorporating bipolar unit into the π‐conjugated interrupted polymer backbone can be a promising approach to obtain host polymer with high triplet level for solution‐processed blue and green phosphorescent polymer light‐emitting diodes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1037–1046  相似文献   

14.
Energy transfer and triplet exciton confinement in polymer/phosphorescent dopant systems have been investigated. Various combinations of host‐guest systems have been studied, consisting of two host polymers, poly(vinylcarbazole) (PVK) and poly[9,9‐bis(octyl)‐fluorene‐2,7‐diyl] (PF), blended with five different phosphorescent iridium complexes with different triplet energy levels. These combinations of hosts and dopants provide an ideal situation for studying the movement of triplet excitons between the host polymers and dopants. The excitons either can be confined at the dopant sites or can flow to the host polymers, subject to the relative position of the triplet energy levels of the material. For PF, because of its low triplet energy level, the exciton can flow back from the dopants to PF when the dopant has a higher triplet energy and subsequently quench the device efficiency. In contrast, efficient electrophosphorescence has been observed in doped PVK films because of the high triplet energy level of PVK. Better energy transfer from PVK to the dopants, as well as triplet exciton confinement on the dopants, leads to higher device performance than found in PF devices. Efficiencies as high as 16, 8.0, and 2.6 cd/A for green, yellow, and red emissions, respectively, can be achieved when PVK is selected as the host polymer. The results in this study show that the energy transfer and triplet exciton confinement have a pronounced influence on the device performance. In addition, this study also provides material design and selection rules for the efficient phosphorescent polymer light‐emitting diodes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2681–2690, 2003  相似文献   

15.
A series of novel carbazole compounds was synthesized and tested for their suitability as host for triplet emitters in an organic-light emitting diode (OLED). In these compounds, a carbazole unit is either connected to other carbazole units to form carbazole dimers and trimers or to fluorene and oxadiazole derivatives to form mixed compounds. The HOMO level of carbazole compounds can be tuned by substitution at the 3, 6, and/or 9 positions. Making oligomers by connecting carbazole molecules via their 3 (3') positions shifts the HOMO level to higher energy, while replacing alkyl groups at the 9 (9') positions by aryl groups shifts the HOMO level to lower energy. Furthermore, it has been found that the triplet energy of these compounds is determined by the presence of poly(p-phenyl) chains in the molecular structure. By identifying the longest poly(p-phenyl) chain, one can predict whether a compound will be a suitable host for a high-energy triplet emitter. An overview of HOMO levels, singlet and triplet levels, and exchange energies is given for all carbazole compounds synthesized. Finally, OLEDs employing two selected carbazole compounds as host and fac-tris(2-phenylpyridine)-iridium (Ir(ppy)(3)) as guest were constructed and characterized electrically.  相似文献   

16.
Vinylsilafluorene (VSiF) was successfully synthesized and copolymerized with vinylcarbazole and methyl methacrylate via free radical copolymerization for the first time. The synthesis, photophysical properties, computational modeling studies, and organic light-emitting devices of the VSiF copolymers were presented. The good coordinated photoluminescent (PL) spectra with the absorption of blue light-emitting materials and the high energy band-gap of the VSiF copolymers were observed. Higher triplet band gap (3 E g) to host the blue phosphorescent emitters and better HOMO and LUMO than PVK for electron and hole injection and transportation of the VSiF model compounds were revealed by density functional theory (DFT) calculations. The preliminary device results in applications of these copolymers as host materials for green phosphorescent emitters demonstrate the copolymers of VSiF and vinylcarbazole have comparable device performance of polyvinylcarazole (PVK), suggesting a bright future of VSiF as building blocks for host materials.  相似文献   

17.
Novel conjugated polymers containing carbazole, phenothiazine or triphenylamine units in the main chain were designed and synthesized via Wittig, Knovenagel or Heck condensations respectively. A majority of them have good solubility in common organic solvents, high thermal stability and good hole-injection ability. Their diluted solutions in THF showed strong absorption with the absorption maximum in the range of 294∼470 nm and the optic band gaps located in the range of 1.90∼2.75 eV. When irradiated by ultraviolet or visible light, the diluted solutions in THF of the polymers emitted light from purple to yellow color with the emission maximum in the range of 347∼597 nm and the full width at half maximum located in the range of 59∼119 nm. Several polymeric light-emitting diodes (PLEDs) devices were fabricated using these polymers as light-emitting materials, and a double-layer device composed of ITO/PEDOT:PSS/PQTN/Mg:Ag showed a good performance, in which the maximum brightness was measured as 2434.0 cd/m2 under a 11.0 V forward bias voltage. Photovoltaic devices were also investigated using these polymers as an active layer, and a device composed of ITO/PNB/PTCDI-C13/Al showed a good performance, which was estimated to have external quantum efficiency at around 1% at 330 nm. From these preliminary experimental results, we may infer that these polymers are good light-emitting materials for PLEDs; while for photovoltaic applications, their absorption spectra need to be further improved to match the solar illumination.  相似文献   

18.
本研究针对蓝光主体材料相对缺乏的现状,利用有机电致磷光器件高效率的优势,选择1,2,4-三唑为电子传输功能基团、咔唑为空穴传输功能基团,设计、制备了新型主体材料oCzTz。通过邻位取代方式实现了分子立体构型高度扭曲,从而使分子的三重态能量达到3.01eV;oCzTz具有较高的热分解温度(353℃)和玻璃化转变温度(110℃);量化计算显示,分子的前线轨道在咔唑和三唑基团之间高度分离。以oCzTz为主体、以FIrpic为发光客体的天蓝光电致磷光器件启亮电压为3.4V,电流效率和功率效率分别高达37.2cd·A-1和29.2lm·W-1,是以TPBI为电子传输层的同类器件的最高效率之一。  相似文献   

19.
New copolyfluorenes (PC8OF0–PC8OF50) comprised of 9,9‐dioctylfluorene and jacketed units 2,5‐bis[(5‐octyloxy‐phenyl)‐1,3,4‐ oxadiazole]‐1‐(3,5‐dibromophenyl)‐benzene (35C8) were synthesized by palladium‐catalyzed Suzuki coupling reaction. They were characterized by molecular weight determination, 1H NMR, elemental analysis, DSC, TGA, absorption and emission spectroscopy, and cyclic voltammetry (CV). These copolymers were readily soluble in common organic solvents and exhibited high glass transition temperature and thermal stability.The copolymer films showed absorption peaks from 381 nm to 351 nm, and PL peaks from 432 nm to 421 nm with a blue shift originated from 35C8 units. Both the HOMO energy levels and LUMO levels changed little as the content of 35C8 units increased (?5.59 eV to ?5.48 eV and ?2.60 eV to ?2.49 eV). Electroluminescent devices: ITO/PEDOT:PSS[poly(ethylenedioxythiophene):polystyrenesulfonate]/polymer/Ca (25 nm)/Ag(80 nm) (a), ITO/PEDOT:PSS/polymer/TPBI [1,3,5‐ tris(N‐phenylbenzimidazol‐2‐yl)benzene](15 nm)/Mg:Ag(10:1, wt)/Ag (b), and ITO/ PEDOT:PSS/PVK[Poly(N‐vinylcarbazole)]/polymer/TPBI(15 nm)/Ca(25 nm)/Ag(80 nm) (c) were fabricated to investigate the influence of jacketed contents and device architectures on emission characteristics. The maximum brightness and current efficiency of the PC8OF25 device (5097.8 cd/m2 and 0.484 cd/A) surpassed those of the PC8OF0 device (3122.8 cd/m2 and 0.416 cd/A). The EL emissions of PC8OF0 – PC8OF50 were pure blue and low‐energy excimer emission bands were successfully suppressed, indicating that these copolymers could be good candidates for blue light‐emitting materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4555–4565, 2009  相似文献   

20.
This article reports the synthesis and characterization of a novel thermally crosslinkable hole‐transporting poly (fluorene‐co‐triphenylamine) (PFO‐TPA) by Suzuki coupling reaction, followed with its application in the fabrication of multilayer light‐emitting diodes by wet processes. The thermal, photophysical, and electrochemical properties of PFO‐TPA were investigated by differential scanning calorimeter, thermogravimetric analysis, optical spectroscopy, and cyclic voltammetry, respectively. Thermally crosslinked PFO‐TPA, through pendant styryl groups, demonstrates excellent thermal stability (Td > 400 °C, Tg = 152 °C), solvent resistance, and film homogeneity. Its highest occupied molecular orbital level (?5.30 eV) lies between those of PEDOT:PSS (?5.0 ~ ?5.2 eV) and poly(9,9‐dioctylfluorene) (PFO: ?5.70 eV), forming a stepwise energy ladder to facilitate hole injection. Multilayer device with crosslinked PFO‐TPA as hole‐injection layer (HIL) (ITO/PEDOT:PSS/HIL/PFO/LiF/Ca/Al) was readily fabricated by successive spin‐coating processes, its maximum luminance efficiency (3.16 cd/A) were about six times higher than those without PFO‐TPA layer (0.50 cd/A). The result of hole‐only device also confirmed hole‐injection and hole‐transport abilities of crosslinked PFO‐TPA layer. Consequently, the device performance enhancement is attributed to more balanced charges injection in the presence of crosslinked PFO‐TPA layer. The thermally crosslinkable PFO‐TPA is a promising material for the fabrication of efficient multilayer polymer light‐emitting diodes because it is not only a hole‐transporting polymer but also thermally crosslinkable. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号