首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Cao J  Dun WL 《Talanta》2011,84(1):155-159
In this report, a novel means for the separation and sweeping of flavonoids (quercetin, rutin, calycosin, ononin and calycosin-7-O-β-d-glucoside) by microemulsion electrokinetic chromatography using mixed anionic and cationic surfactants as modified pseudostationary phase was presented. The optimized background electrolyte consisted of 0.5% (w/v) ethyl acetate, 2.0% (w/v) SDS, 9 mM DTAC, 4.0% (w/v) 1-butanol and 10 mM sodium borate or 25 mM phosphoric acid. We systematically investigated the separation and preconcentration conditions, including the concentrations of surfactant, types of sweeping, sample matrix, the effect of high salt or acetonitrile, and sample injection volume. It was found that the use of mixed surfactants significantly enhanced the separation efficiency through the change of the efficient electrophoretic mobility of analytes. Compared with normal sample injection, 185-508-fold sensitivity enhancement in terms of limit of detection was achieved through effective sweeping of large sample volume at 50 mbar pressure (up to 45% capillary length). At last, the proposed method was suitable for the determination of Radix Astragali sample.  相似文献   

2.
Microemulsion electrokinetic chromatography (MEEKC) using 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4) ionic liquid (IL) as additive was developed for the analysis of baicalin, wogonin and baicalein in Scutellariae radix and its preparation. After conducting a series of optimizations, baseline separation was obtained for the analytes within 5min under the optimum conditions (sodium dodecyl sulfate (SDS) 0.88% (m/v) ethyl acetate 0.8% (v/v) butan-1-ol 0.2% (v/v) and the buffer composition were 25% acetonitrile (v/v), 7.5 mM BMIM-BF4 and 10 mM NaH2PO4, pH 8.2, applied voltage 17.5 kV and detection at 254 nm), the method has been successfully applied to the determination and quantification of the analytes in the extracts of S. radix (cooked), S. radix (raw) and Qingfeiyihuowan which was the preparation including S. radix.  相似文献   

3.
A novel method of microemulsion electrokinetic chromatography (MEEKC) coupled with hollow fiber-liquid phase microextraction (HF-LPME) was developed for determination of six aromatic amines including 4-methylaniline, 3-nitroaniline, 2,4-dimethylaniline, 4-chloroaniline, 3,4-dichloraniline and 4-aminobiphenyl. Baseline separation of six aromatic amines was achieved within 8 min by using the microemulsion buffer containing a 10 mM borate buffer at pH 9.0, 0.8% (v/v) ethyl acetate as oil droplets, 60 mM sodium cholate as surfactant, 5.0% (v/v) 1-butanol as co-surfactant. The influence factors relevant to the HF-LPME process were systemically investigated. The obtained enrichment factors were ranged between 70 and 157 in a 30 min extraction time, and the limits of detection ranged between 0.0021 and 0.0048 μg/mL. This purposed method was successfully applied for the analysis of aromatic amines in water sample and the recoveries were ranged from 87.2% to 99.8%.  相似文献   

4.
Pascoe R  Foley JP 《The Analyst》2002,127(6):710-714
A novel oil-in-water microemulsion incorporating the chiral surfactant dodecoxycarbonylvaline (DDCV) was used to achieve the rapid enantiomeric separation of pharmaceutical drugs by electrokinetic chromatography (EKC). Incorporation of DDCV into a microemulsion resulted in an elution range more than double that provided the micellar form of the surfactant aggregate. Interestingly, for the same compounds the enantioselectivity provided by the chiral DDCV microemulsions ranged from 1.06-1.30 for the neutral and cationic drugs, which was slightly higher than that provided by chiral DDCV micelles. The use of a low surface tension oil (ethyl acetate) permitted a much lower concentration of chiral surfactant to be employed; this, together with the use of a zwitterionic buffer (ACES) resulted in a very low conductivity microemulsion that allowed a higher separation voltage to be utilized, resulting in rapid enantiomeric separations (< 8 min.). Mobility matching of the buffer cation(s) was used to improve peak shape and efficiencies. In our limited survey of the phase diagram, the optimum composition of the microemulsion buffer was 1.0% (w/v) DDCV (30 mM), 0.5% (v/v) ethyl acetate, 1.2% (v/v) 1-butanol and 50 mM ACES buffer at pH 7.  相似文献   

5.
A PEG‐modified reversed migration MEEKC method was developed for simultaneous determination of six polyynes, including oplopandiol, falcarindiol, oplopandiol acetate, (11S, 16S, 9Z)‐9,17‐octadecadiene‐12,14‐diyne‐1,11,16‐triol,1‐acetate, oplopantriol B, and oplopantriol A, in Oplopanax horridus and Oplopanax elatus. The running buffer containing 0.8% v/v ethyl acetate, 3.8% w/v SDS, 6.6% v/v n‐butanol in 20 mM phosphate buffer (pH 2.5), followed by mixing with propan‐2‐ol at 30% v/v and PEG‐1000 at 15% w/v, was applied in the analysis. The proposed method was successfully applied to determine the six polyynes in five samples of Oplopanax horridus and one of O. elatus. The result showed that the types and amounts of polyynes present were obviously different when comparing the two herbs. Besides, the developed PEG‐modified reversed MEEKC method might be suitable for the analysis of hydrophobic analytes in herbal medicines.  相似文献   

6.
A simple solid phase extraction (SPE) method coupled with high performance liquid chromatography (HPLC) using UV detector and microemulsion electrokinetic chromatography (MEEKC) has been developed and compared for the quantitative determination of miconazole nitrate in pharmaceutical formulation. For HPLC method, two parameters were optimized, namely, the wavelength and the mobile phases. The optimized condition was at the 225 nm wavelength and the mobile phase of ACN:MeOH (90:10 v/v). There are seven MEEKC parameters that were optimized, in this research, which were applied to voltage, temperature, wavelength, sodium dodecyl sulfate (SDS) concentration, buffer pH, buffer concentration and butan-1-ol concentration. The optimum MEEKC condition was obtained using 86.35 % (w/w) 2.5 mM borate buffer pH 9, 0.25 % (w/w) SDS, 0.8 % (w/w) ethyl acetate, 6.6 % w/w butan-1-ol and 6.0 % (w/w) acetonitrile. The combination of SPE using a diol column with HPLC–UV and the MEEKC methods were successfully applied for the determination of miconazole nitrate in a pharmaceutical formulation with the recovery percentage of 98.35 and 92.50 %, respectively.  相似文献   

7.
Pai YF  Lin CC  Liu CY 《Electrophoresis》2004,25(4-5):569-577
A wall-coated histidine capillary column was developed for the on-line preconcentration of nonsteroidal anti-inflammatory drugs (NSAIDs) in capillary electrochromatography (CEC). A wide variety of experimental parameters, such as the sample buffer, background electrolyte (BGE) composition, concentration, sample plug lengths, water plug, and the effect of organic modifiers were studied. The relationship between peak height and injection times for the NSAIDs by variation of sample and BGE buffer concentration was investigated. On addition of sodium chloride (0.3-0.6%) to the sample zone, the stacking efficiency was increased. With acetate buffer (100 mM, pH 5.0)/ethanol (20% v/v) as BGE and sample solution in acetate buffer (0.2 mM, pH 5.0)/ethanol (20% v/v)/NaCl (0.3% w/v), NSAIDs could be determined at low microM levels without sample matrix removal. The detection limit was 0.096 microM for indoprofen, 0.110 microM for ketoprofen, 0.012 microM for naproxen, 0.023 microM for ibuprofen, 0.110 microM for fenoprofen, 0.140 microM for flurbiprofen, and 0.120 microM for suprofen. The method could be successfully applied to the simultaneous determination of NSAIDs in urine. The recoveries were better than 82% for all the analytes. The present method enables simple manipulation with UV detection for the determination of NSAIDs at low concentration levels in complex matrix samples.  相似文献   

8.

A simple solid phase extraction (SPE) method coupled with high performance liquid chromatography (HPLC) using UV detector and microemulsion electrokinetic chromatography (MEEKC) has been developed and compared for the quantitative determination of miconazole nitrate in pharmaceutical formulation. For HPLC method, two parameters were optimized, namely, the wavelength and the mobile phases. The optimized condition was at the 225 nm wavelength and the mobile phase of ACN:MeOH (90:10 v/v). There are seven MEEKC parameters that were optimized, in this research, which were applied to voltage, temperature, wavelength, sodium dodecyl sulfate (SDS) concentration, buffer pH, buffer concentration and butan-1-ol concentration. The optimum MEEKC condition was obtained using 86.35 % (w/w) 2.5 mM borate buffer pH 9, 0.25 % (w/w) SDS, 0.8 % (w/w) ethyl acetate, 6.6 % w/w butan-1-ol and 6.0 % (w/w) acetonitrile. The combination of SPE using a diol column with HPLC–UV and the MEEKC methods were successfully applied for the determination of miconazole nitrate in a pharmaceutical formulation with the recovery percentage of 98.35 and 92.50 %, respectively.

  相似文献   

9.
Various strategies have been investigated for separating a group of nonsteroidal anti-inflammatory drugs (NSAIDs) by microemulsion electrokinetic capillary chromatography (MEEKC) using high-speed separations. The parameters that of affect the separation, such as the nature of the oil droplet and the buffer, and the surfactant concentration have been studied. In addition, several organic solvents were used to decrease the retention of the analytes in the oil droplet phase and to improve the resolution of the NSAIDs. The optimum microemulsion background electrolyte (BGE) solution made of 0.8% w/w ethyl acetate, 6.6% w/w butan-1-ol, 6.0% w/w acetonitrile, 1.0% w/w sodium dodecyl sulfate (SDS), and 85.6% w/w of 10 mM sodium tetraborate at pH 9.2 resolved the drugs within 8 min. The short-end injection procedure is an alternative for reducing the analysis time. When this procedure was used, the microemulsion BGE solution consisted of 0.8% w/w ethyl acetate, 6.6% w/w butan-1-ol, 17.0% w/w methanol, 1.0% w/w SDS, and 74.6% w/w of 10 mM sodium tetraborate, pH 9.2, and the NSAIDs were separated within 3 min. The reversed electrode polarity stacking mode (REPSM) technique was applied to the on-line concentration of the NSAIDs. In this technique, the sample matrix was pumped out of the capillary using a polarity-switching step. When this technique was applied, the sensitivity was enhanced up to 40-fold and the limits of detection (LODs) were in the low microg.L(-1) levels.  相似文献   

10.
A simple, rapid, sensitive high performance liquid chromatography method with fluorescent detection was developed and validated for the determination of bendroflumethiazide in human plasma. Extraction from the plasma was by liquid-liquid extraction using ethyl acetate. Mosapride citrate was used as the internal standard. The chromatographic separation was performed on reverse phase LiChrosphere C18 column with mobile phase comprising of acetonitrile and phosphate buffer (38:62 v/v). The assay precision ranged from 0.9–12.5 and accuracy between 96.8–108.8%, revealing that the method has good reproducibility over the concentration range of 0.98–100.16 ng mL−1. The validated method has been applied to analyze the bendroflumethiazide concentrations for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

11.
This paper describes the development and validation of a microemulsion liquid chromatography (MELC) method for simultaneous determination of perindopril tert-butylamine and its impurities in bulk active substances and the pharmaceutical dosage form of tablets. An appropriate resolution with reasonable retention times was obtained for a microemulsion containing 0.24% (w/v) butyl acetate, 0.30% (w/v) ethyl acetate, 2% (w/v) sodium dodecyl sulfate, 7.75% (w/v) n-butanol, and 20.0 mM potassium dihydrogen phosphate, the pH of which was adjusted to 3.70 with 85% orthophosphoric acid. Separations were performed on a Nucleosil 120-5 butyl modified (C4), 250 x 4 mm, 5 microm particle size silica column at 40 degrees C, with a mobile phase flow rate of 1.25 mL/min. UV detection was performed at 254 nm. The established method was subjected to method validation, and required validation parameters were defined. Robustness testing, an important part of method validation, was performed as well. Since robustness validation can be conducted using different experimental designs, the Plackett-Burman design was applied due to its possibility of testing many factors at the same time. The validated MELC method was found to be suitable for the simultaneous determination of perindopril tert-butylamine and its impurities in pharmaceuticals.  相似文献   

12.
The CE method employing an indirect UV detection for the enantioseparation of 1,3‐dimethylamylamine (DMAA), widely used in various preworkout and dietary supplements labeled as a constituent of geranium extract has been developed. The dual‐selector system consisting of negatively charged sulfated α‐CD (1.1% w/v) and sulfated β‐CD (0.2% w/v) in 5 mM phosphate/Tris buffer (pH 3.0) containing the addition of 10 mM benzyltriethylammonium chloride (BTEAC) as the chromophoric additive was used for the enantiomeric separation of DMAA stereoisomers with the LODs in the range of 7.82–9.24 μg/mL. The method was partly validated and applied for the determination of the stereoisomeric composition of DMAA in commercial dietary supplements to verify the potential natural origin of DMAA.  相似文献   

13.
A method based on the coupling of capillary electrophoresis with mass spectrometry (CE/MS) was developed for the monitoring of 3-quinuclidinol and its four N-alkyl derivatives (methyl, ethyl, propyl and isopropyl derivatives). A fragmentation study (collision-induced dissociation of ions in an ion trap) and optimization of the ion optics set-up for CE/MS experiments using direct infusion of a methanolic solution of the standards into the mass spectrometer were carried out in advance. Molecular ions of all quaternary compounds and the quasi-molecular ion [M + H]+ of free 3-quinuclidinol prevail in the mass spectra. In the MS/MS of propyl and isopropyl derivatives, the elimination of the alkyl chain dominates, leading to the ion at m/z 128. The fragmentation of the other compounds is more complex. Previous CE separation of the mixture of isobaric propyl and isopropyl derivatives is necessary for their unambiguous identification. A 10 mM ammonium acetate buffer (pH 4.0) is the optimum running electrolyte, allowing the CE separation of methyl, ethyl, propyl and isopropyl derivatives. A 0.5% (v/v) solution of acetic acid in methanol provides sufficient detection sensitivity when used as the sheath liquid. Limits of detection of 0.1 ppm for 3-quinuclidinol and 0.05 ppm for quaternary derivatives were achieved under the optimum conditions. The optimized method was applied to the determination of 3-quinuclidinol and related quaternary derivatives spiked into a sample of pond water. The experimental set-up for CE/MS/MS was investigated, which strongly increases the identification capability of the technique.  相似文献   

14.
A capillary electrophoresis method with ultraviolet (UV) detection was developed and optimized for the enantiomer separation of norepinephrine (NE), epinephrine (EP) and isoprenaline (IP) using dual cyclodextrins (CDs) of 2-hydroxypropyl-beta-CD (HP-beta-CD) and heptakis (2,6-di-o-methyl)-beta-CD (DM-beta-CD) as chiral selectors. Optimal separation was obtained using a running buffer of 50mM phosphate containing 30mM HP-beta-CD and 5mM DM-beta-CD at pH 2.90 and a field strength of 20kV in 45cmx75mum (40cm effective length) uncoated capillary. The UV absorbance detection was set at 205nm. A 0.1% (w/w) polyethylene glycol or 0.1% (v/v) acetonitrile was used to enhance the detection sensitivity. There was a wide and excellent linear calibration graph for each enantiomer in the range 1.0x10(-3) to 1.0x10(-6)M and the detection limit (S/N=3) was found from 8.5x10(-7) to 9.5x10(-7)M. The method has been applied for the determination of isoprenaline in isoprenaline hydrochloride aerosol and to the analysis of serum samples. The recoveries of NE and EP in serum and IP in drug were ranged from 90 to 110%. The relative standard deviations of all the analyte peaks were less than 2.8% for migration time and less than 4.8% for peak area.  相似文献   

15.
A rapid, reliable and reproducible method based on microemulsion electrokinetic chromatography (MEEKC) for simultaneous determination of 13 kinds of water- and fat-soluble vitamins has been developed in this work. A novel microemulsion system consisting of 1.2% (w/w) sodium lauryl sulphate (SDS), 21% (v/v) 1-butanol, 18% (v/v) acetonitrile, 0.8% (w/w) n-hexane, 20mM borax buffer (pH 8.7) was applied to improve selectivity and efficiency, as well as shorten analysis time. The composition of microemulsion used as the MEEKC running buffer was investigated thoroughly to obtain stable separation medium, as well as the optimum determination conditions. Acetonitrile as the organic solvent modifier, pH of the running buffer and 1-butanol as the co-surfactant played the most important roles for the separation of the fat-soluble vitamins, water-soluble vitamins and stabilization of system, respectively. The 13 water- and fat-soluble vitamins were baseline separated within 30 min. The system was applied to determine water- and fat-soluble vitamins in commercial multivitamin pharmaceutical formulation, good accuracy and precision were obtained with recoveries between 97% and 105%, relative standard derivations (RSDs) less than 1.8% except vitamin C, and acceptable quantitative results corresponding to label claim.  相似文献   

16.
Maeda E  Hirano K  Baba Y  Nagata H  Tabuchi M 《Electrophoresis》2006,27(10):2002-2010
The conformational separation of monosaccharides labeled with fluorescent 2-aminoacrydone (AMAC) was performed by electrophoresis on a plastic microchip with light-emitting diode confocal fluorescence detection. The AMAC-labeled five neutral monosaccharide mixture (D-glucose (Glc), D-mannose, D-galactose, L-fucose, and D-xylose) or two amino monosaccharide mixture (N-acetyl-D-glucosamine and N-acetyl-D-galactosamine) were well separated at pH 8.5 and 0.5% w/v methylcellulose of 200 mM borate buffer conditions using microchip electrophoresis. The separation was successfully performed considering the difference in stability of the complex between the hydroxyl residue of the monosaccharide and borate ions, and we found that 200 mM and pH 8.5 of borate buffer conditions were critical. High-speed separation for the neutral monosaccharides (50 s) and for amino monosaccharides (70 s) was attained at a 400 V/cm of electric field condition, showing all peak resolutions were greater than 0.9% and RSD of mobility were less than 1.9%. The detection limits of 0.86 microM for Glc and <1 microM for all other monosaccharides were enhanced with the addition of 0.5% w/v methylcellulose to the buffer. These attainments are fully compatible with conventional CE. The analysis of the subtle differences in the conformational stability and the value of the hydroxyl residue of the borate complex allowed the development of an efficient prospective tool for attaining high-resolution separation of monosaccharide mixtures having complicated and analogous conformations.  相似文献   

17.
Cao L  Wang H  Zhang H 《Electrophoresis》2005,26(10):1954-1962
The analytical potential of a fluorescein analogue, 6-oxy-(N-succinimidyl acetate)-9-(2'-methoxycarbonyl) fluorescein (SAMF), for the first time synthesized in our laboratory, as a labeling reagent for the labeling and determination of amino compounds by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection was investigated. Biogenic monoamines and amino acids were chosen as model analytes to evaluate the analytical possibilities of this approach. The derivatization conditions and separation parameters for the biogenic amines were optimized in detail. The derivatization was performed at 30 degrees C for 6 min in boric acid buffer (pH 8.0). The derivatives were baseline-separated in 15 min with 25 mM boric acid running buffer (pH 9.0), containing 24 mM SDS and 12.5% v/v acetonitrile. The concentration detection limit for biogenic amines reaches 8 x 10(-11) mol.L(-1) (signal-to-noise ratio = 3). The application of CE in the analysis of the SAMF-derivatized amino acids was also exploited. The optimal running buffer for amino acids suggested that weak acidic background electrolyte offered better separation than the basic one. The proposed method was applied to the determination of biogenic amines in three different beer samples with satisfying recoveries varying from 92.8% to 104.8%. Finally, comparison of several fluorescein-based probes for amino compounds was discussed. With good labeling reaction, excellent photostability, pH-independent fluorescence (pH 4-9), and the resultant widely suited running buffer pH, SAMF has a great prospect in the determination of amino compounds in CE.  相似文献   

18.
A simple and sensitive micellar electrokinetic capillary chromatography (MEKC) method was developed for the separation and determination of six flavonoids in Epimedium brevicornum Maxim. Field-enhanced sample injection with reverse migrating micelles (FESI-RMM) was used for on-line concentration of the flavonoids. An electrolyte containing 20 mM H3PO4, 100 mM SDS, 20% acetonitrile and 2% 2-propanol (pH 2.0) was chosen as the electrophoretic buffer. By optimizing the stacking conditions, about 40-360-fold improvement in the detection sensitivity was obtained for the flavonoids.  相似文献   

19.
A micellar electrokinetic chromatography method has been developed for simultaneous determination of melatonin and its precursors and metabolites. A 20 mM borate buffer pH 9.5 with 50 mM SDS served as the electrolyte. Tryptophan, 5-methoxyindoleacetic acid, 6-hydroxymelatonin, melatonin, serotonin, and 5-methoxytryptamine were baseline separated in less than 13 min. The limits of detection for UV detection and fluorometric detection based on native fluorescence of analytes were at the sub-ppm level. The proposed method with UV detection was applied to melatonin content control in pharmaceutical tablets with a precision expressed as RSD (n = 7) = 1.6%. For biological samples extraction with chloroform and ethyl acetate was examined. With ethyl acetate and chloroform recoveries of 87.2% and 82.1% melatonin, respectively, were obtained from plasma samples. The recovery of melatonin from spiked urine samples was 80.0% for ethyl acetate and 82.5% for chloroform. Fluorometric detection provides about two-fold improvement over UV in the detection of melatonin and minor improvements for three other analytes, but is much poorer than UV for tryptophan and 6-hydroxymelatonin in applied conditions.  相似文献   

20.
Microemulsion electrokinetic chromatography (MEEKC) was carried out in a pH 2.5 phosphate buffer to effectively suppress the electroosmotic flow (EOF). With 66.6% (w/w) 25 mM phosphate buffer pH 2.5, 20.0% (w/w) 2-propanol, 6.6% (w/w) 1-butanol, 6.0% (w/w) sodium lauryl sulphate (SDS), and 0.8% (w/w) n-octane as the separation medium, the fat-soluble vitamins A palmitate, E acetate, and D3 were baseline separated within 11 min. With strongly suppressed EOF, the polarity of the separation voltage was reversed (positive electrode at the outlet); the n-octane micro droplets surrounded by negatively charged SDS molecules migrated towards the detector. The aqueous part of the microemulsion was modified with 20% (w/w) 2-propanol to improve partition between the n-octane phase and the surrounding aqueous medium. The fat-soluble vitamins were separated in order of decreasing hydrophobicity with a high migration time stability (repeatable within 0.1% RSD). Excellent accuracy and precision were obtained when the system was applied for the determination of vitamin E acetate in commercial vitamin tablets; quantitative data corresponded to 97.0% of label claim, intra-day results varied within 1.72% RSD (n=6), and inter-day results varied within 3.22% RSD (n=5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号