首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In most multi-item inventory systems, the ordering costs consist of a major cost and a minor cost for each item included. Applying for every individual item a cyclic inventory policy, where the cycle length is a multiple of some basic cycle time, reduces the major ordering costs. An efficient algorithm to determine the optimal policy of this type is discussed in this paper. It is shown that this algorithm can be used for deterministic multi-item inventory problems, with general cost rate functions and possibly service level constraints, of which the well-known joint replenishment problem is a special case. Some useful results in determining the optimal control parameters are derived, and worked out for piecewise linear cost rate functions. Numerical results for this case show that the algorithm significantly outperforms other solution methods, both in the quality of the solution and in the running time.  相似文献   

2.
A multi-item inventory system is considered which has the property that, for each single item, a reorder policy using the E.O.Q. formula would be appropriate. Holding costs are linear, and fixed ordering costs are assumed to be composed of a major set-up cost reflecting the pure fact of placing an order, and a sum of minor set-up costs corresponding to the items included in the order. If it is desirable to form a certain number of groups of items where all items of one group share the same order cycle, it is shown that there is always an optimal grouping in which items are arranged in increasing order of their ratio of yearly holding costs and minor set-up costs.A heuristic for forming the groups is given which turns out to be an optimal algorithm for the case that there are no major set-up costs. After an initial sorting of ratios, the worst-case complexity of this procedure is linear in the number of items.  相似文献   

3.
Modularization and customization have made enterprises face the multi-item inventory problems and the interactions among those items. A powerful, affordable information technology system can make the continuous review inventory policy more convenient, efficient, and effective. In this study, a (Qr) model is developed to find the optimal lot size and reorder point for a multi-item inventory with interactions between necessary and optional components. In order to accurately approximate costs, the service cost is introduced and defined in proportion to the service level. In addition, the service cost and purchasing cost are taken simultaneously, and are treated as a budget constraint for executives to consider because the firm’s strategy could influence the choice of service level. The proposed model is formulated as a nonlinear optimization problem, as the service level is nonlinear. Thus, some known procedures are revised to solve this problem and the results are compared with other models. The results show that the revised procedure performs better than the N–R procedure, leading to important insights about inventory control policy.  相似文献   

4.
We study a two-level inventory system that is subject to failures and repairs. The objective is to minimize the expected total cost so as to determine the production plan for a single quantity demand. The expected total cost consists of the inventory carrying costs for finished and unfinished items, the backlog cost for not meeting the demand due-date, and the planning costs associated with the ordering schedule of unfinished items. The production plan consists of the optimal number of lot sizes, the optimal size for each lot, the optimal ordering schedule for unfinished items, and the optimal due-date to be assigned to the demand. To gain insight, we solve special cases and use their results to device an efficient solution approach for the main model. The models are solved to optimality and the solution is either obtained in closed form or through very efficient algorithms.  相似文献   

5.
We consider an inventory model for spare parts with two stockpoints, providing repairable parts for a critical component of advanced technical systems. As downtime costs for these systems are expensive, ready–for–use spare parts are kept in stock to be able to quickly respond to a breakdown of a system. We allow for lateral transshipments of parts between the stockpoints upon a demand arrival. Each stockpoint faces demands from multiple demand classes. We are interested in the optimal lateral transshipment policy. There are three ways in which a demand can by satisfied: from own stock, via a lateral transshipment, or via an emergency procedure. Using stochastic dynamic programming, we characterize and prove the structure of the optimal policy, that is, the policy for satisfying the demands which minimizes the average operating costs of the system. This optimal policy is a threshold type policy, with state-dependent thresholds at each stockpoint for every demand class. We show a partial ordering in these thresholds in the demand classes. In addition, we derive conditions under which the so-called hold back and complete pooling policies are optimal, two policies that are often assumed in the literature. Furthermore, we study several model extensions which fit in the same modeling framework.  相似文献   

6.
We consider a multi-item two-echelon spare part inventory system in which the central warehouse operates under an (nQ,?R) policy and the local warehouses implement order-up-to S policy, each facing a compound Poisson demand. The objective is to find the policy parameters minimizing expected system-wide inventory holding and fixed ordering costs subject to an aggregate mean response time constraint at each warehouse. In this paper, we propose four alternative approximations for the steady state performance of the system; and extend a heuristic and a lower bound proposed under Poisson demand assumption to the compound Poisson setting. In a computational study, we show that the performances of the approximations, the heuristic, and the lower bound are quite satisfactory; and the relative cost saving of setting an aggregate service level rather than individually for each part is quite high.  相似文献   

7.
We consider a multi-item two-echelon inventory system in which the central warehouse operates under a (Q,R) policy, and the local warehouses implement basestock policy. An exact solution procedure is proposed to find the inventory control policy parameters that minimize the system-wide inventory holding and fixed ordering cost subject to an aggregate mean response time constraint at each facility.  相似文献   

8.
One of the most fundamental results in inventory theoryis the optimality of (s, S) policy for inventory systems withsetup cost. This result is established based on a key assumptionof infinite production/ordering capacity. Several studies haveshown that, when there is a finite production/ordering capacity,the optimal policy for the inventory system is very complicatedand indeed, only partial characterization for the optimal policyis possible. In this paper, we consider a continuous reviewinventory system with finite production/ordering capacity andsetup cost, and show that the optimal control policy for thissystem has a very simple structure. We also develop efficientalgorithms to compute the optimal control parameters.  相似文献   

9.
This study is concerned with minimizing the total discounted cost of operating an inventory system and providing the warehouse space necessary to accommodate the replenishment lots, under the assumption of constant product demand. The use of an approximation objective function for the single-item case allows the optimal warehouse size as well as the ratio of relevant investment costs to relevant inventory costs to be written in closed-form. Based upon the value of this ratio, circumstances are identified under which an integrated approach is justified, and others under which the inventory policy and storage capacity can be determined sequentially. The multi-item version of the problem under study is solved by the Lagrangian multiplier method, given that no coordination takes place between the items. Finding the optimal Lagrange multiplier can be accomplished efficiently by the Newton–Raphson method.  相似文献   

10.
Common characteristics of inventory systems include uncertain demand and restrictions such as budgetary or storage space constraints. Several authors have examined budget constrained multi-item stochastic inventory systems controlled by continuous review policies without considering marginal shortage costs. Existing models assume that purchasing costs are paid at the time an order is placed, which is not always the case since in some systems purchasing costs are paid when orders arrive. In the latter case the maximum investment in inventory is random since the inventory level when an order arrives is a random variable. Hence payment of purchasing costs on delivery yields a stochastic budget constraint for inventory. This paper models a multi-item stochastic inventory system with backordered shortages when estimation of marginal backorder cost is available, and payment is due upon order arrival. The budget constraint can easily be converted into a storage constraint.  相似文献   

11.
This paper deals with the analysis of a multi-item, continuous review model of a multi-location inventory system of repairable spare parts, in which lateral and emergency shipments occur in response of stock-outs. The objective is to determine close-to-optimal stocking policies minimizing the total cost for inventory holding, lateral transshipments, and emergency shipments subject to a target level for the average waiting times at all locations. We structure the optimization problem as a combinatorial problem and four different heuristics are developed and evaluated in terms of their total costs and computation times. It is shown that the greedy-type heuristic has the best performance. A numerical study is carried out to look at the relative cost savings obtained from the use of multi-item approach and lateral transshipments.  相似文献   

12.
In this paper, we deal with a multi-item, stochastic, periodic review inventory system with general cost structure which permits partial or complete backlogging of unfilled demand. Since both the (, S) policy and the mixed reorder policy are not optimal, we derive several properties of an optimal ordering policy and propose a new algorithm for computing it. This algorithm is based on the policy iteration method (PIM), but reduces substantially computation times in the policy evaluation and improvement routines of the PIM.  相似文献   

13.
This paper deals with inventory control in a class of M/G/1 queueing systems. At each point of time the system can be switched from one of two possible stages to another. The rate of arrival process and the service rate depend on the stage of the system. The cost structure imposed on the model includes both fixed switch-over costs and a holding cost at a general rate depending on the stage of the system. The rule for controlling the inventory is specified by two switch-over levels.Using an embedding approach, we will derive a formula for the long-run average expected costs per unit time of this policy. By an appropriate choice of the cost parameters, we may obtain various operating characteristics for the system amongst which the stationary distribution of the inventory and the average number of switch-overs per unit time.  相似文献   

14.
In this paper, we present a simulation optimization algorithm for solving the two-echelon constrained inventory problem. The goal is to determine the optimal setting of stocking levels to minimize the total inventory investment costs while satisfying the expected response time targets for each field depot. The proposed algorithm is more adaptive than ordinary optimization algorithms, and can be applied to any multi-item multi-echelon inventory system, where the cost structure and service level function resemble what we assume. Empirical studies are performed to compare the efficiency of the proposed algorithms with other existing simulation algorithms.  相似文献   

15.
This paper studies a single-product, dynamic, non-stationary, stochastic inventory problem with capacity commitment, in which a buyer purchases a fixed capacity from a supplier at the beginning of a planning horizon and the buyer’s total cumulative order quantity over the planning horizon is constrained with the capacity. The objective of the buyer is to choose the capacity at the beginning of the planning horizon and the order quantity in each period to minimize the expected total cost over the planning horizon. We characterize the structure of the minimum sum of the expected ordering, storage and shortage costs in a period and thereafter and the optimal ordering policy for a given capacity. Based on the structure, we identify conditions under which a myopic ordering policy is optimal and derive an equation for the optimal capacity commitment. We then use the optimal capacity and the myopic ordering policy to evaluate the effect of the various parameters on the minimum expected total cost over the planning horizon.  相似文献   

16.
This paper presents a mathematical model developed for optimization of single-item multi-stage production-inventory systems. The demands are assumed to occur randomly at the same rate whereas processing and setup times are different, each following exponential distributions with different means. The model assumes a "one-for-one ordering" inventory policy and that on total system cost expression comprising setup, holding and penalty costs is obtained for optimization. As a special case, single stage, cost expressions become the same as those obtained by Baker. Computational results for two stages are given. Implications of aggregating the two stages into an equivalent simple stage are discussed.  相似文献   

17.
This study addresses mixed batch shipment policy with common replenishment cycle for multiple items in a single-supplier multiple-retailer integrated system. The supplier produces multiple items on a single facility under a common replenishment cycle and delivers products to retailer utilizing a mixed batch shipment policy. The objective is to determine the optimal replenishment cycle, the number of shipments, and the structure of mixed shipment, all of which minimize the integrated total cost per unit time. The single-item isolation model is constructed first, and the single-item isolation model is then integrated into the single-item integration model. Moreover, the single-item integration model is integrated into the multi-item integration model. The minimum total cost model is transformed into a maximum replenishment cycle model to optimize the structure of the mixed batch shipment. The replenishment cycle division method is then developed to obtain the optimal solutions to the subject problem. Examples are presented to illustrate the procedures involved in the replenishment cycle division method.  相似文献   

18.
In this paper we consider a complex production-distribution system, where a facility produces (or orders from an external supplier) several items which are distributed to a set of retailers by a fleet of vehicles. We consider Vendor-Managed Inventory (VMI) policies, in which the facility knows the inventory levels of the retailers and takes care of their replenishment policies. The production (or ordering) policy, the retailers replenishment policies and the transportation policy have to be determined so as to minimize the total system cost. The cost includes the fixed and variable production costs at the facility, the inventory costs at the facility and at the retailers and the transportation costs, that is the fixed costs of the vehicles and the traveling costs. We study two different types of VMI policies: The order-up-to level policy, in which the order-up-to level quantity is shipped to each retailer whenever served (i.e. the quantity delivered to each retailer is such that the maximum level of the inventory at the retailer is reached) and the fill-fill-dump policy, in which the order-up-to level quantity is shipped to all but the last retailer on each delivery route, while the quantity delivered to the last retailer is the minimum between the order-up-to level quantity and the residual transportation capacity of the vehicle. We propose two different decompositions of the problem and optimal or heuristic procedures for the solution of the subproblems. We show that, for reasonable initial values of the variables, the order in which the subproblems are solved does not influence the final solution. We will first solve the distribution subproblem and then the production subproblem. The computational results show that the fill-fill-dump policy reduces the average cost with respect to the order-up-to level policy and that one of the decompositions is more effective. Moreover, we compare the VMI policies with the more traditional Retailer-Managed Inventory (RMI) policy and show that the VMI policies significantly reduce the average cost with respect to the RMI policy.  相似文献   

19.
This paper extends the notions of perishable inventory models to the realm of continuous review inventory systems. The traditional perishable inventory costs of ordering, holding, shortage or penalty, disposal and revenue are incorporated into the continuous review framework. The type of policy that is optimal with respect to long run average expected cost is presented for both the backlogging and lost-sales models. In addition, for the lost-sales model the cost function is presented and analyzed.  相似文献   

20.
In this paper the joint maintenance and spare parts ordering problem for more than one identical operating items is studied. The operating items may suffer two types of silent failures: a minor failure, which results in item malfunctioning, and a major failure, which renders the item completely out-of-function. Inspections are periodically held to detect any failures and the inspected items are preventively maintained, repaired or replaced according to their condition. Two ordering policies are investigated to supply the necessary spare parts: a periodic review and a continuous review policy. The expected total maintenance and inventory cost per time unit is derived and the proposed models are optimized for real case data. In addition, the sensitivity of the proposed models is studied through numerical examples and the effect of some key problem characteristics on the optimal decisions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号