首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coupled mode equations and coupling coefficients for the resonant nonlinear interaction of three extra-ordinary waves in a hot magnetized plasma are derived by Whitham's method of averaged Lagrangian. The wave vectors of the three waves are taken as noncollinear and perpendicular to the external uniform magnetic field. Of the three waves one is of high frequency mode and the other two are of low frequency mode.  相似文献   

2.
We fulfill the detailed analysis of coupling the charged bosonic higher-spin fields to external constant electromagnetic field in first order in external field strength. Cubic interaction vertex of arbitrary massive and massless bosonic higher-spin fields with external field is found. Construction is based on deformation of free Lagrangian and free gauge transformations by terms linear in electromagnetic field strength. In massive case a formulation with Stueckelberg fields is used. We begin with the most general form of deformations for Lagrangian and gauge transformations, admissible by Lorentz covariance and gauge invariance and containing some number of arbitrary coefficients, and require the gauge invariance of the deformed theory in first order in strength. It yields the equations for the coefficients which are exactly solved. As a result, the complete interacting Lagrangian of arbitrary bosonic higher-spin fields with constant electromagnetic field in first order in electromagnetic strength is obtained. Causality of massive spin-2 and spin-3 fields propagation in the corresponding electromagnetic background is proved.  相似文献   

3.
The resonant interaction between three waves propagating perpendicularly to an external magnetic field in a plasma is considered. We present the explicit expressions for the three wave coupling coefficients of a warm multi‐component plasma. The results of previous work on the generation of THz radiation by laser plasma interaction are significantly improved. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The refractive index of surface spin waves propagating in a ferromagnetic medium with a nonuniform distribution of the parameters of uniaxial and orthorhombic magnetic anisotropies and exchange coupling is determined within the spin-density formalism. The coefficients of reflection and transmission of spin waves at the interface between two homogeneous magnets with different constants of uniaxial and orthorhombic magnetic anisotropies, exchange coupling, and saturation magnetization are calculated. The dependences of the intensity of a reflected wave and the refractive index on the wave frequency and the strength of an external dc homogeneous magnetic field are determined.  相似文献   

5.
High-frequency surface magnetic polaritons of finite amplitude propagating along the interface between a ferrite and a nonlinear insulator in a weakly nonuniform, shaft-shaped external magnetic field are investigated theoretically. The analysis is based on employment of the variational method together with bilinear relations having the form of Lorentz’s lemma. It is shown that the wave dispersion and the transverse profile of a wave along the field nonuniformity depend significantly on the amplitude of the wave. Zh. Tekh. Fiz. 68, 92–95 (September 1998)  相似文献   

6.
7.
8.
Propagation characteristics of a high-power electromagnetic wave through an inhomogeneous magnetized plasma is investigated. Considering the momentum transfer equations for electrons and ions and taking into account the ponderomotive force, the distribution of electron density and dielectric permittivity are obtained. Using non-linear dielectric permittivity and Maxwell's equations in the absence of external current and charge densities, non-linear wave equations are achieved. The results indicate that the external static magnetic field can modify the profiles of both the electric and magnetic fields. It is also shown that the external static magnetic field enhances the amplitude of the electron density and the non-linear dielectric permittivity.  相似文献   

9.
An analysis has been carried out for reflection and transmission of a plane SH-wave incident at a corrugated interface between two anisotropic magnetoelastic half-spaces. Rayleigh’s method of approximation is applied to derive the reflection and transmission coefficients for first order approximation of corrugation. The expressions for reflection and transmission coefficients for first order approximation of corrugation are obtained in closed form for a special type of interface. It is found that these coefficients are proportional to the amplitude of corrugation and are functions of magnetoelastic properties of materials of the half-spaces as well as the angle of incidence. Special cases are deduced for anisotropic and isotropic materials for particular case of corrugation. Numerical computations are performed for a specific model of two different anisotropic magnetoelastic media. The effects of anisotropic magnetoelastic coupling parameter, the angle at which wave crosses the magnetic field, frequency factor, wave length of corrugation, and the amplitude of corrugation are shown through figures.  相似文献   

10.
The plasma tensor dielectric permittivity and electromagnetic field accurate expressions in the external axial magnetic field are obtained from the Maxwell’s equations and the double component plasma particle linear movement equations. Further, the flux of energy inside the plasma-cavity drift channel is presented. Based on them, some of the property of cavity passband dispersion and coupling resistance of plasma-filled coupled-cavities slow wave structure in different plasma density and magnetic field conditions is analyzed according to the numerical calculation.  相似文献   

11.
The linear and nonlinear optical properties of a hydrogenic donor in a disc-like parabolic quantum dot in the presence of an external magnetic field are studied. The calculations were performed within the effective mass approximation, using the matrix diagonalization method and the compact density-matrix approach. The linear and nonlinear optical absorption coefficients between the ground (L =0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. We find that the linear, nonlinear third-order, and total optical absorption coefficients are strongly affected by the confinement strength of QDs, the external magnetic field, and the incident optical intensity.  相似文献   

12.
The boundary-value problem of the magnetoelastic wave interaction with a moving domain wall in a ferromagnetic crystal is solved in the nonexchange magnetostatic approximation with allowance for the external magnetic field. It is shown that the difference introduced by magnetic field between the ferromagnetic resonance frequencies of the domains does not cause any noticeably departure of the refraction characteristics of reflected and transmitted waves from those observed at zero frequency mismatch. By contrast, the magnitudes of the transmission and reflection coefficients strongly depend on the external magnetic field and on the mobility of the domain wall. The dependence of the magnitude of the reflection coefficient on the external magnetic field at a fixed angle of shear wave incidence is found to possess two ferromagnetic resonance peaks. The positions and heights of the peaks may vary depending on the mobility of the domain wall.  相似文献   

13.
The scalar wave equation in an external gravitational field is considered. In the weakfield approximation, the time-symmetric GREEN 's function is built up via the invariant defining equation to first order in the perturbation parameter. The coefficients of the distributions are represented by four-dimensional FOURIER integrals containing the FOURIER transform of the first-order gravitational potential and KUMMER 's functions.  相似文献   

14.
A theoretical investigation has been made of nonlinear propagation of ultra-low-frequency electromagnetic waves in a magnetized two fluid (negatively charged dust and positively charged ion fluids) dusty plasma. These are modified Alfvén waves for small value of and are modified magnetosonic waves for large , where is the angle between the directions of the external magnetic field and the wave propagation. A nonlinear evolution equation for the wave magnetic field, which is known as Korteweg de Vries (K-dV) equation and which admits a stationary solitary wave solution, is derived by the reductive perturbation method. The effects of external magnetic field and dust characteristics on the amplitude and the width of these solitary structures are examined. The implications of these results to some space and astrophysical plasma systems, especially to planetary ring-systems, are briefly mentioned. Received 8 July 1999 and Received in final form 11 October 1999  相似文献   

15.
We have studied rotating magnetohydrodynamic flows of a thin layer of astrophysical plasma with a free boundary in the β-plane. Nonlinear interactions of the Rossby waves have been analyzed in the shallow-water approximation based on the averaging of the initial equations of the magnetic fluid dynamics of the plasma over the depth. The shallow-water magnetohydrodynamic equations have been generalized to the case of a plasma layer in an external vertical magnetic field. We have considered two types of the flow, viz., the flow in an external vertical magnetic field and the flow in the presence of a horizontal magnetic field. Qualitative analysis of the dispersion curves shows the presence of three-wave nonlinear interactions of the magnetic Rossby waves in both cases. In the particular case of zero external magnetic field, the wave dynamics in the layer of a plasma is analogous to the wave dynamics in a neutral fluid. The asymptotic method of multiscale expansions has been used for deriving the nonlinear equations of interaction in an external vertical magnetic field for slowly varying amplitudes, which describe three-wave interactions in a vertical external magnetic field as well as three-wave interactions of waves in a horizontal magnetic field. It is shown that decay instabilities and parametric wave amplification mechanisms exist in each case under investigation. The instability increments and the parametric gain coefficients have been determined for the relevant processes.  相似文献   

16.
17.
18.
We investigate the influence of a perpendicular magnetic field on a bound polaron near the interface of a polar-polar semiconductor with Rashba effect. The external magnetic field strongly changes the ground state binding energy of the polaron and the Rashba spin-orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splits the ground state binding energy of the bound polaron. In this paper, we have shown how the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity, the wave vector of the electron and the electron areal density, taking into account the SO coupling. Due to the presence of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the bound polaron are more stable, and we find that in the condition of week magnetic field, the Zeeaman effect can be neglected.  相似文献   

19.
A Lagrangian is introduced which includes the coupling between magnetic moments m and the degrees of freedom σ of a reservoir. In case the system-reservoir coupling breaks the time reversal symmetry the magnetic moments perform a damped precession around an effective field which is self-organized by the mutual interaction of the moments. The resulting evolution equation has the form of the Landau-Lifshitz-Gilbert equation. In case the bath variables are constant vector fields the moments m fulfill the reversible Landau-Lifshitz equation. Applying Noether?s theorem we find conserved quantities under rotation in space and within the configuration space of the moments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号