首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The l-dimethoxymethyl-5,6-dimethyldene-7-oxabicyclo[2.2.1]hept-2-ene ( 9 ) has been prepared. On treatment with Fe2(CO)9, the endocyclic double bond C(2)?C(3) was coordinated first giving the corresponding exo-Fe(CO)4 complex 10 . The latter reacted with Fe2(CO)9 and afforded cis-heptacarbonyl-μ-[1RS,2SR,3RS,4SR,5RS,6SR-2,3-η: C5,6,C-η-(1-(dimethoxymethyl)-5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene)]diiron ( 11 ) as a major product. On heating, 11 underwent deoxygenation of the 7-oxabicyclo[2.2.1]heptene moiety yielding tricarbonyl[C,5,6,C-η-(1-(dimethoxymethyl)-5,6-dimethylidenecyclohexa-1,3-diene)]iron ( 13 ). In MeOH, a concurrent, regioselective methoxycarbonylation was observed giving tricarbonyl[C,3,4,C-η-(methyl 5-(dimethoxymethyl)-3,4-dimethylidenecyclohexa-1,5-diene-1-carboxylate)]iron ( 14 ). Oxidative removal of the Fe(CO)3 moiety in 13 and 14 did not afford the expected ortho-quinodimethane derivatives but led to CO insertions giving 2,3-dihydro-2-oxo-1Hindene-4-carbaldehyde ( 20 ) and methyl 7-formyl-2-3-dihydro-2-oxo-lH-indene-5-carboxylate ( 21 ), respectively.  相似文献   

2.
The transition-metal-carbonyl-induced cyclodimerization of 5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene is strongly affected by substitution at C(1) While 5,6-dimethylidene-7-oxabicyclo[2.2.1]hept–2-ene-l-methanol ( 7 ) refused to undergo [4 + 2]-cyclodimerization in the presence of [Fe2(CO)9] in MeOH, 1-(dimethoxymethyl)-5,6-di-methylidene-7-oxabicyclo[2.2.1]hept-2-ene ( 8 ) led to the formation of a 1.7:1 mixture of ‘trans’ ( 19, 21, 22 ) vs. ‘cis’ ( 20, 23, 24 ) products of cyclodimerization together with tricarbonyl[C, 5,6, C-η-(l-(dimethoxymethyl)-5,6-di-methylidenecyclohexa-1,3-diene)]iron ( 25 ) and tricarbonyl[C,3,4, C-η-(methyl 5-(dimethoxymethyl)-3,4-di-methylidenecyclohexa-1,5-diene-l-carboxylate)]iron ( 26 ). The structures of products 19 and of its exo ( 21 ) and endo ( 22 ) [Fe(CO)3(1,3-diene)]complexes) and 20 (and of its exo ( 23 ) and endo (24) (Fe(CO)3(1,3-diene)complexes) were confirmed by X-ray diffraction studies of crystalline (1RS, 2SR, 3RS, 4RS, 4aRS, 9aSR)-tricarbonyl[C, 2,3, C-η-(1,4-epoxy-1,5-bis(dimethoxymethyl])-2,3-dimethylidene-1,2,3,4,4a,9,9a,10-octahydroanthracene)iron ( 21 ). In the latter, the Fe(CO)3(1,3-diene) moiety deviates significantly from the usual local Cs symmetry. Complex 21 corresponds to a ‘frozen equilibrium’ of rotamers with η-alkyl, η3-allyl bonding mode due to the acetal unit at the bridgehead centre C(1).  相似文献   

3.
μ-Carbonyl(Rh? Rh)di(η5-indenyl)[(2R,3S)-C,2,3,C-η-(2,3,4,5-tetramethylidenebicyclo[2.2.1]heptan-7-one)]]-dirhodium(I)(Rh? Rh) (7) and cis-μ-[(2R,3S,5R,6S))-C,2,3,C-η:C,5,6,C-η-(2,3,5,6-tetramethylidenebicyclo[2.2.1]heptan-7-one)]bis[μ-carbonyldi(η5-indenyl)dirhodium(I)(Rh? Rh)] ( 8 ) have been prepared. Complex 7 reacts with Fe2(CO)9 in hexane/MeOH and gives cis-μ-[(2R,3S,5R,6S] ( 9 ), trans-μ-[(2R,3S,5S,6R)-C,2,3,C-η: C,5,6, C-η-(2,3,5,6-tetramethylidenebicyclo[2.2.1]heptan-7-one)-μ-carbonyldi(η5-indenyl)dirhodium(I)(Rh? Rh)-(tricarbonyliron) ( 10 ), and, μ-carbonyl(Rh? Rh)[(2R,3S)-C,2,3,C-η-(2,3-dimethyl-5,6-dimethylidenebicyclo-[2.2.1]hept-2-en-7-one)]di(η5-indenyl)dirhodium(I)(Rh? Rh) ( 11 ). Treatment of 7-oxa[2.2.1]hericene ( 4 ) with Fe2(CO)9 or (cyclooctene)2Fe(CO)3 gave a 1:2 mixture of cis-μ-[(2R,3S,5R,6S)-] ( 12 ) and trans-μ-[(2R,3S,5S,6R)-C,2,3,C-η:C,5,6,C-η-(2,3,5,6-tetramethylidenebicyclo[2.2.1]heptan-7-one)]bis(tricarbonyliron)( 13 ).  相似文献   

4.
The thermal cyclodimerization of 5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene assisted by Fe2 (CO)9 gives the title complex 1 , a precursor for the synthesis of antitumoral anthracyclinones. The crystal structure of 1 has been determined by X-ray diffraction: a = 11.188 (1); c = 26.968 (3) Å; space group tetragonal, P41212, Z = 8; R = 0.041; RW = 0.033. The tricarbonyliron group is in the exo-position and the coordination polyhedron is tetragonal pyramidal. The NMR coupling constants are well-related to the observed dihedral angles between the non-aromatic protons and now give a reliable criterion for assigning the stereochemistry of the metal in d8-complexes of 2,3-dimethylidene-7-oxanorbornane derivatives.  相似文献   

5.
Highly regio- and stereoselective monohydroxylation of the C?C bond of (+)-7-oxabicyclo[2.2.1]hept-5-en-2-one ( 8 ) was achieved via LiAlH4 reduction of the corresponding 5,6-exo-epoxy dimethyl acetal 9 . The reaction gave exclusively (–)-(1R, 2R, 4S)-6,6-dimethoxy-7-oxabicyclo[2.2.1]heptan-2-exo-ol ( 10 ) which was transformed into 2,5-anhydro-3-O-benzyl-4-deoxy-D -ribo-hexonic acid ( 15 ) and 2,5-anhydro-4-deoxy-D -ribo-hexonic acid ( 6 ) via ozonolysis of (–)-(1R, 4S, 6R)-6-exo-benzyloxy-2-{[(tert-butyl)dimethylsilyl]oxy}-7-oxabicyclo[2.2.1]hept-2-ene ( 14 ). Cordycepin C ( 5 ) was derived from 6 and 4,5,6-triaminopyrimidine using CsF/DMF to generate the adenine heterocycle.  相似文献   

6.
The products generated by heating 5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene (1) with Fe2(CO)9, Ru3(CO)12, Os3(CO)12, Cr(CO)3(MeCN)3, (or W(CO)5(MeCN) or by treatment with Fe-atoms have been characterized by spectroscopic methods. Apart from the expected η2- and η4-complexes of the triene 1 , condensation products are formed which arise from the formal [4 + 2]-cyclodimerization of 1 involving the endocyclic double bond of one molecule and the diene moiety of a second. The [4 + 2]-cyclodimerization is catalyzed by Os3(CO)12 in MeOH and gives 1,4-epoxy-7-methoxy-2,3-dimethylidene-1,2,3,4,4a,9,9a,10-octahydroanthracene (15) ). Fe-Atoms induce a stereoselective [2 + 2]-cyclodimerization pf 1 which involves its endocyclic double bond and produces the dimer 8 .  相似文献   

7.
The product of the reaction of [Fe(benzalacetone)(CO)3] with 7,7-dimethoxy-5,6-dimethylidenebicyclo[2.2.1] hept-2-ene is tricarbonyl-[2,3-η:O-σ-(7,7-dimethoxy-5,6-dimethylidenebicyclo [2.2.1]hept-2-ene)]iron. Crystals are monoclinic, space group P21/c with a = 6.612(2), b = 11.610(4), c = 18.604(6) Å, and β = 95.91(2)°. The coordination at the metal atom is trigonal bipyramidal. The equatorial sites are occupied by 2 CO's and by the midpoint of the endocyclic double bond of the organic ligand. The axial sites are occupied by one CO group and the O-atom of one MeO group of the C(OMe)2 bridge. It is an uncommon example of a d8 metal carbonyl complex bearing an O-bonded ligand.  相似文献   

8.
Ethyl and tert-butyl azidoformate added to 7-oxabicyclo[2.2.1]hept-5-en-2-one dimethyl ( 5 ) and dibenzyl ( 6 ) acetals to give mixtures of regioisomeric triazolines. The latter gave the corresponding aziridines (6,6-dialkoxy-3-aza-8-oxatricyclo[3.2.1.02,4]octane-3-carboxylates 15 , 19 , 23 , and 27 and 31 ) on UV irradiation. In the presence of protic acids, the aziridines were rearranged into protected amines ([3-endo-alkoxy-5-oxo-7-oxabicyclo[2.2.1]hept-2-exo-yl]carbamates 16 , 20 , 24 , and 28 and 33 ). Using (+)-(1R, 4R)-5,5-bis(benzyloxy)7-oxabicyclo[2.2.1]hept-2-ene((+)- 6 ) derived from furan and l-cyanovinyl (1S)-camphanate, the method was applied to prepare 2-O-benzyl-3-[(tert-butoxy)carbonyiamino]-5-O-(3-chlorobenzoyl)-3-deoxy-β-D -altrofuranurono-6,1-lactone ((?)- 37 ). This compound was converted to methyl 3-amino-3-deoxy-α-D-altropyranoside hydrochloride ( 44 ) and several derivatives.  相似文献   

9.
Epoxidation of (?)-(1R,2R,4R)-2-endo-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl acetate ((?)-5) followed by saponification afforded (+)-(1R,4R,5R,6R)-5,6-exo-epoxy-7-oxabicyclo[2.2.1]heptan-2-one ((+)-7). Reduction of (+)-7 with diisobutylaluminium hydride (DIBAH) gave (+)-1,3:2,5-dianhydroviburnitol ( = (+)-(1R,2R,3S,4R,6S)-4,7-dioxatricyclo[3.2.1.03,6]octan-2-ol; (+)-3). Hydride reductions of (±)-7 were less exo-face selective than reductions of bicyclo[2.2.1]heptan-2-one and its derivatives with NaBH4, AlH3, and LiAlH4 probably because of smaller steric hindrance to endo-face hydride attack when C(5) and C(6) of the bicyclo-[2.2.1]heptan-2-one are part of an exo oxirane ring.  相似文献   

10.
Optically pure (?)-trans-μ-[(1R,2R,3S,4S,5S,6R)-C,2,3,C-η:C,5,6,C-η-(2,3,5,6,7-pentamethylidenebicyclo[2.2.2]octane)]bis(tricarbonyliron) ((?)- 9 ), (?)-trans-μ-[(1R,2R,3S,4S,5S,6R,7S)-C,2,3,C-η:C,5,6,C-η-(7-methyl-2,3,5,6-tetramethylidenebicyclo[2.2.2]octane)]bis(tricarbonyliron) ((?)- 10 ), and (?)-trans-μ-[(1R,2R,3S,4S,5S,6R,7R)-C,2,3,C-η:C,5,6,C-η-(2,3,5,6-tetramethylidene(7D)bicyclo[2.2.2]octane)]bis(tricarbonyliron) ((?)- 16 ) have been prepared. Their CD spectra were solvent- and concentration-independent, but temperature-dependent, in accord with the existence of equilibria between rapidly interconverting diastereoisomeric species which can be interpreted as arising from distortions of the tricarbonyl(diene)iron units from the Cs symmetry.  相似文献   

11.
(1R,2S,4R)-2-Cyano-7-oxabicyclo[2.2.1]hept-5-en-2-yl (1S′)-camphanate ( 5 ) was transformed into (?)-methyl 2,5-anhydro-3,4,6-O-tris[(tert-butyl)dimethylsilyl]-D -allonate ( 2 ), (+)-1,3-diphenyl-2-{2′,3′,5′-O-tris[(tert-butyl)dimethylsilyl]-β-D -ribofuranosyl}imidazolidine ( 3 ), and the benzamide 20 of 1-amino-2,5-anhydro-1-deoxy-3,4,6-O-tris-[((tert-butyl)dimethylsily)]-D -allitol. Compound 2 was converted efficiently into optically active tiazofurin ( 1 ).  相似文献   

12.
A new, practical method for the optical resolution of bicyclic ketones if illusttrated by the preparation of (+)-(1R,4R)-7-oxabicyclo[2.2.1]bept-5-en-2-one ((+)- 1 ) and (+)-(1R, 2S,4R)-2-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-yul acetate ((+)- 4 ). It involves the diastereoselective formation of a brucine complex with the corresponding cyanhydrine mixture.  相似文献   

13.
Enantiomerically pure methyl 5-bromo-5-deoxy-2,3-O- isopropylidene-β-D - (D - 5b ) and -β-l-ribofuranoside (l- 5b ) have been derived from (?)-(1R,2S,4R)-2-exo-cyano-7-oxabicylo[2.2.1]hept-5-en-endo,-yl (1′S)-camphanate ( 1 ) and (+)-(1S,2R,4S)-2-exo-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl(1′R)-camphanate ( 2 ), respectively, in 5 synthetic steps and 28% overall yield. Hydrolysis of D-5b and L - 5b afforded methyl 2,3-O isopropylidene-β-D -ribofuranoside (D -5a) and methyl 2,3-O-isopropylidene β-L-ribofuranoside (L-5a), respectively. The intermediate (+)-(1R,4R,5R,6R) 5-exo,6-exo-(isopropylidenedioxy)- 7 -oxabicyclo[2.2.1]heptan-2-one ((+)- 7 ) and its enantiomer(–)-7 were also obtained enantiomerically pure by resolution of (=)- 7 by the Johnson-Zeller method. In bothe approaches, the chiral auxiliaries ((–)- and (+)-camphanic acids, or (+)-(S)-N,S-dimethyl-S-phenylsulfoximide) were recovered at an early stage of the synthesis.  相似文献   

14.
The preparation and the CD spectra of optically pure (+)-trans-μ-[(1R,4S,5S,6R,7R,8S)-C,5,6,C -η : C,7,8,C-η-(5,6,7,8-tetramethylidene-2-bicyclo [2.2.2]octanone)]bis(tricarbonyliron) ((+)- 7 ) and (+)-tricarbonyl[(1S,4S,5S,6R)-C-5,6,C-η-(5,6,7,8,-tetramethylidene-2-bicyclo[2.2.2]octanone)]iron ((+)- 8 ), and of its 3-deuterated derivatives (+)-trans-μ-[(1R,3R,4S,5S,6R,7R,8S)-C,5,6,C-η : C,7,8,C-η-5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]-(octanone)]bis(tricarbonyliron) ((+)- 11 ) and (+)-tricarbonyl[(1S,3R,4S,5S,6R)-C-5,6,C- η-(5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]octanone)]iron ((+)- 12 ) are reported. The chirality in (+)- 7 and (+)- 8 is due to the Fe(CO)3 moieties uniquely. The signs of the Cotton effects observed for (+)- 7 and (+)- 8 obey the octant rule (ketone n→π*CO transition). Optically pure (?)-3R-5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]octanone ((?)- 10 ) was prepared. Its CD spectrum showed an ‘anti-octant’ behaviour for the ketone n→π*CO transition of the deuterium substituent. The CD spectra of the alcoholic derivatives (?)-trans-μ-[(1R,2R,4S, 5S,6R,7R,8S)-C,5,6,C-η : C,7,8,C- η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octanol)]bis(tricarbonyliron) ((?)- 2 ) and (?)-tricarbonyl- [(1S,2R,4S,5S,6R)- C,5,6,C- η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octanol)]iron ((?)- 3 ) and of the 3-denterated derivatives (?)- 5 and (?)- 6 are also reported. The CD spectra of the complexes (?)- 2 , (?)- 3 , (+)- 7 , and (+)- 8 were solvent and temperature dependent. The ‘endo’-configuration of the Fe(CO)3 moiety in (±)- 8 was established by single-crystal X-ray diffraction.  相似文献   

15.
The Diels-Alder adduct of 2,4-dimethylfuran to 1-cyanovinyl (1′R)-camphanate ((+)-(1R,2S,4R)-2-exo-cyano-1,5-dimethyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl (1′R)-camphanate ((+)- 1 )) was converted into (+)-2,7-dideoxy-2,4-di-C-methyl-L -glycero- ((+)- 6 ) and -D -glycero-L -altro-heptono-1,4-lactone ((+)- 7 ), into (?)-(3R,4R,5R,6S)-3,4:5,7-bis(isopropylidenedioxy)-4,6-dimethylheptan-2-one ((?)- 22 ), and into (+)-(2R,3R,4R,5S,6S)-3,4:5,6-bis(isopropylidenedioxy)-2,4-dimethylheptanal ((+)- 34 ). Condensation of ((+)- 34 with the lithium enolate of (?)-(1R,4R,5S,6R)-6-exo-[(tert-butyl)dimethylsilyloxy]-1,5-endo-dimethyl-7-oxabicyclo[2.2.1] heptan-2-one ((?)- 38 ; derived from (+)- 1 ) gave a 3:2 mixture of aldols (+)- 39 and (+)- 40 (mismatched pairs of a α-methyl-substituted aldehyde and (E)-enolate) whereas the reaction of (±)- 34 with (±)- 38 gave a 10:1 mixture of aldols (±)- 41 and (±)- 39 . A single aldol, (?)- 44 , was obtained to condensing (+)- 34 with the lithium enolate of (+)-(1S,4S,5S,6S)-5-exo-(benzyloxy)-1,5-endo-dimethyl-7-oxabicyclo[2.2.1]heptan-2-one ((+)- 43 ; derived from (?)-(1S,2R,4S)-2-exo-cyano-1,5-dimethyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl (1′S)-camphanate ((?)- 3 )). All these cross-aldolisations are highly exo-face selective for the bicyclic ketones. The best stereochemical matching is obtained when the lithium enolates and α-methyl-substituted aldehydes can realize a ‘chelated transition state’ that obeys the Cram and Felkin-Anh models (steric effects). Polypropionate fragments containing eleven contiguous stereogenic centres and tertiary-alcohol moieties are thus prepared with high stereoselectivity in a convergent fashion. The chiral auxiliaries ((1R)- and (1S)-camphanic acid) are recovered at the beginning of the syntheses.  相似文献   

16.
The rates of photo-oxidation of exocyclic S-cis-butadienes grafted onto bicyclo-[2.2.1]heptanes and 7-oxabicyclo[2.2.1]heptanes ( 1–6 ) are dependent upon remote modifications of the bicyclic skeletons. They correlate with the rates of Diels-Alder additions of these dienes to strong dienophiles. The 2,3-dimethylidenenorbornane ( 1 ), 5,6-dimethylidene-2-norbornene ( 2 ) and 2,3-dimethylidene-7-oxanorbornane ( 3 ) gave the corresponding endo-peroxides (3,6-dihydro-1,2-dioxines) 7–9 in good yield. The 2, 3, 5, 6-tetramethylidene-7-oxanorbornane ( 4 ) gave the mono-endo-pe-roxide 6 , the latter did not react with a second equivalent of oxygen. Similarly, 5, 6-dimethylidene-7-oxa-2-norbornene ( 5 ) was unreactive toward photo-oxidation. Thermal isomerization of the endo-peroxides 7 and 9 gave, the trans-diepoxides 10 and 14 , respectively, with high stereoselectivity. The endo-peroxides 6 , 7 and 9 were cleanly isomerized into the corresponding α, β-unsaturated γ-hydroxy aldehydes in the presence of catalytic amounts of Rh2(CO)4Cl2.  相似文献   

17.
The “naked sugar” (+)-(1R, 4R)-7-oxabicyclo[2.2.1]hept-5-en-one((+)-2) has been converted to D-lividosamine ((+)-1: 3-deoxy-D-glucosamine) and derivatives via (+)-2-chloro-2,3-dideoxy-5,6-O-isopropylidene-D-arabino-hexono-1,4-lactone ((+)-33) and (+)-2-azido-2,3-dideoxy-5,6-O-isopropylidene-D-ribo-hexono-1,4-lactone ((+)-34) in a highly stereoselective fashion. Similarly, 2-acetamido-2,3-dideoxy-D-arabino-hexose and derivatives were derived from the “naked sugar” (−)-(1S,4S-7-oxabicyclo[2.2.1]-hept-5-en-2-one ((−)-2) via the double hydroxylation of the C=C double bond in (−)-N-benzyl-N-[(1R,2S,4S)-6-bromo-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl] amine ((−)-40).  相似文献   

18.
The asymmetric aza-Diels-Alder reaction of the (1R)-8-phenylmenthyl or (1R)-8-phenylisoneomenthyl glyoxylate-derived N-benzylimine with cyclopentadiene resulted in the enantioselective synthesis of the corresponding pure [(1S,3-exo)-2-benzyl-2-azabicyclo[2.2.1]hept-5-ene]-3-carboxylates (80 or 69% yield, respectively). Reduction of these cycloadducts with LiAlH4 afforded pure (−)-[(1S,3-exo)-2-benzyl-2-azabicyclo[2.2.1]hept-5-en-3-yl]methanol. Furthermore, a reaction sequence based on Barbier-Wieland degradation of both (1S,3-exo)-adducts afforded pure (+)-(1R)-2-benzoyl-2-azabicyclo[2.2.1]heptan-3-one. In the course of the two transformation sequences referred, the chiral auxiliaries were recovered in a virtually quantitative way.  相似文献   

19.
The crystal structures of (1R,4R,5S,8S)-9,10-dimethylidentricyclo[6.2.1.02,7]undec2(7)-ene-4,5-dicarboxylic anhydride ( 3 ), (1R,4R,5S,8S)11-isopropylidene-9,10-dimethylidenetricyclo[6.2.1.m2,7]undec-2(7)-ene-4,5-dicarboxylic anhydride ( 6 ), (1R,4R,5S8S)-9,10-dimethylidenetricyclo[6.2.2.02,7]dodec-2(7)-ene-4,5-dicarboxylic anhydride ( 9 ), (1R4R5S8S)-TRICYCLO[6.2.2.02,7]dodeca-2(7), 9-diene-4,5-dicarboxylic anhydride ( 12 ) and (4R,5S)-tricyclo[6.1.1.02.7]dec-2(7)-ene-4,5-dicarboxylic acid ( 16 ) were established by X-ray diffraction. The alkyl substituents onto the endocyclic bicyclo[2.2.1]hept-2-ene double bond deviate from the C(1), C(2), C(3), C(4), plane by 13.5°4 in 3 and by 13.9° in 6 , leaning toward the endo-face. No such out-of-plane deformations were observed with the bicyclo[2.2.2]oct-2-ene derivatives 9 and 12 . The exocyclic s-cis-butadiene moieties in 3, 6 and 9 do not deviate significantly from planarity. The deviation from planarity of the double bond n bicyclo[2.2.1]hept-2-ene derivatives and planarity in bicyclo[2.2.2]oct-2-ene analogues is shown to be general by analysis of all known structures in the Cambridge Crystallographic Data File. The non-planarity of the bicyclo[2.2.1]hept-2-ene double bond cannot be attributed only to bond-angle deformations which would favour rehybridizatoin of the olefinic C-atoms since the double bond in the more strained bicyclo[2.1.1]hex-2-ene drivative 16 deviates from planarity by less than 4°.  相似文献   

20.
Methyl (1S,2S,3R,4R)-2,3-isopropylidenedioxy-5-iodomethyl-2-tetrahydrofurylacetate prepared in two stages from D-ribose acetonide underwent a series of uncommon transformations under the treatment with bases providing the following different products depending on the base applied: methyl 3-(5-acetyl-2,2-dimethyl-1,3-dioxol-4-yl)propionate (DBU), methyl 2,3-isopropylidenedioxy-7-oxabicyclo[2.2.1]heptane-6-carboxylate (t-BuOK), methyl {(5R)-2,2-dimethyl-5-[(2R)-oxiranyl]-1,3-dioxolan-4-ylidene}propionate and methyl-(E)-3-{(4S,5R)-2,2-dimethyl-5-[(1R)-(2-oxiranyl)]-1,3-dioxolan-4-yl}-2-propenoate (t-BuOK and LDA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号