首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of Element Oxides of the Fifth Main Group with Trithiazyl Chloride. Crystal Structure of (S5N5)4[As8Cl28] · 2 S4N4 Whereas P4O10 does not react with (NSCl)3, the oxides As2O3, Sb2O3, and Bi2O3 react under formation of (S5N5)4[As8Cl28] · 2 S4N4, S5N5[SbCl6] and a mixture of S4N5[BiCl4] and S4N4Cl[BiCl4], respectively. The products were characterized by their IR spectra. The crystal structure of (S5N5)4[As8Cl28] · 2 S4N4 was determined by means of X-ray diffraction (1168 independent observed reflexions, R = 0.059). Crystal data: tetragonal, space group P4 21c, Z = 2, a = 1596.6, c = 1520.1 pm. The compound consists of planar S5N5 cations, octameric anions [As8Cl28]4? and S4N4 molecules. The S5N5 ions and the S4N4 molecules show positional disorder, which very probably is of dynamical type for the S5N5 ion. The [As8Cl28]4? ions can be described as a (so far unknown) [As4Cl16]4? ion with cubane-like structure (As? Cl bridging distances between 286 and 305 pm) to which four AsCl3 molecules are attached via chloro bridges with As? Cl bond lengths between 314 and 328 pm.  相似文献   

2.
Reaction of Trithiazyl Chloride with Titanium Tetrachloride. Crystal Structure of (S4N5)2[Ti2Cl10] In the reaction of trithiazyl chloride with titanium tetrachloride, chlorine is abstracted and the brown-yellow adduct TiCl4(N2S2) is obtained. In this compound — according to its i.r. spectrum — a N2S2 ring is bonded to the titanium via the N atoms, thus forming a polymer. As a by-product, brown crystalline (S4N5)2[Ti2Cl10] forms. Its crystal structure was determined and refined with X-ray diffraction data (R = 0.042 for 812 reflexions). It crystallizes in the monoclinic space group P21/c with two formula units per unit cell. The lattice constants are a = 670, b = 1 633, c = 1108 pm, β = 97.24°. The structure consists of S4N5 cations, which are nearly equal to those in [S4N5]Cl, and [Ti2Cl10]2? anions, which are nearly identical with those in (PCl4)2[Ti2Cl10].  相似文献   

3.
Reactions of Zirconium Tetrachloride with Trithiazylchloride. Crystal Structure of (S4N4)[Zr2Cl10] Zirconium tetrachloride reacts with (NSCI)3 yielding (S3N3CI2)2[Zr2CI10], S4N4[Zr2CI10], or (S4N4CI)2[Zr2CI10], depending of the reaction conditions. These compounds were characterized by their i.r. spectra. They have an ionic structure containing the known ions S3N3CI2⊕, S4N42⊕, S4N4CI, and the thus far unknown [Zr2CI10]2? ion. According to the X-ray structure determination (2827 independent observed reflexions, R = 0.027), (S4N4CI)2[Zr2CI10] crystallizes in the space group P&1macr; with the lattice constants a = 688, b = 1132, c = 1827 pm, α = 103.2°, β = 98.7° and γ = 91.90 and with Z = 2 formula units per unit cell. The structure is built up from S4N4CI ions, which are nearly identical as in S4N4CI[FeCI4] and from [Zr2CI10]2? ions in which two chloro bridges join two edge-sharing octahedra.  相似文献   

4.
Complexes of Rhenium with Planar ReN2S2 Rings. Syntheses and Crystal Structures of AsPh4[ReCl4(N2S2)] and PPh4[ReBr4(N2S2)] The complex [ReCl4(N2S2)]? can be obtained as PPh4 or AsPh4 salt by the action of S(NSiMe3)2 and of diphenylacetylene, respectively, on the chlorothionitrene complex [ReCl4(NSCl)2]?. Another method of synthesis is the reaction of [ReCl3(NSCl)2(POCl3)] with SbPh3. [ReBr3(N2S2)]2 is obtained from excess Me3SiBr and [ReCl3(NSCl)2(POCl3)]. The anionic complex [ReBr4(N2S2)]? forms from either [ReCl4(NSCl)2]? or [ReCl4(N2S2)]? with Me3SiBr. All compounds are black, diamagnetic, and sensitive to moisture; the PPh4 and AsPh4 salts are soluble in CH2Cl2 and CH2Br2. The IR spectra are reported. The crystal structures of AsPh,4[ReCl4(N2S2)] and PPh4[ReBr4(N2S2)] were determined by X-ray diffraction. AsPh4[ReCl4(N2S2)]: space group P2/n, Z = 2, a = 1244.5, b = 1429.3, c = 791.1 pm, γ = 96.89° (1715 observed reflexions, R = 0.082). PPh4[ReBr4[ReBr4(N2S2)]: space group P21/n, Z = 4, a = 961.7, b = 1397.4, c = 2205.7 pm, β = 102.10° (1787 observed reflexions, R = 0.073). In both compounds the [ReX4(N2S2)]? anions have the same type of structure, the Re atoms forming part of planar ReN2S2 rings; the bond lengths are ReN 177 pm, NS 152 pm, and SS 259 for the chloro compound and ReN 184 pm, NS 153 pm, and SS 264 pm for the bromo compound. In AsPh4[ReCl4(N2S2)] the cations are stacked to form columns in the c-direction; in PPh4[ReBr4(N2S2)], there is considerable distortion form this packing principle.  相似文献   

5.
S5N5 [GaCl4]? and S5N5 [Ga2Cl7]?. Synthesis, IR Spectra, and Crystal Structures . S5N5[GaCl4] was obtained in high yields from gallium and trithiazyl chloride; depending on the solvent, different second products are formed: S4N4Cl[GaCl4] in dichloromethane and S3N2Cl[GaCl4] in carbon tetrachloride. These products can be separated due to their high solubility in CH2Cl2, S5N5[GaCl4] being only slightly soluble. S3N2Cl[GaCl4] can be converted to S5N5[GaCl4] with additional (NSCl)3. By the action of GaCl3 on S5N5[GaCl4], S5N5[Ga2Cl7] is formed. The IR spectra of the title compounds are reported; they differ considerably as well in number as in frequencies of the cation bands and show that the S5N5 ion has different structures depending on the anion. The crystal structures of both compounds were determined by X-ray diffraction. Crystal data: S5N5[GaCl4], orthorhombic, a = 943.8, b = 1369.0, c = 2068.8 pm, space group Pnma, Z = 8 (1381 observed reflexions, R = 0.075); S5N5[Ga2Cl7], monoclinic, a = 847.5, b = 1298.2, c = 1654.0 pm, β = 93.51°, space group P21/n, Z = 4 (1359 observed reflexions, R = 0.065). S5N5[GaCl4] is isotypic with S5N5[AlCl4], showing a heartshaped S5N5 ion, but large ellipsoids of vibration suggest the presence of some kind of disorder (statical or dynamical). In S5N5[Ga2Cl7] the S5N5 has an azulene-like structure. In both cases the cations are planar, all S? N bond lengths being approximately equal.  相似文献   

6.
Five-coordinated Complexes of Osmium (VIII) and Rhenium (VII). Crystal Structure of PPh4[OsO4Cl] · CH2Cl2 The five-coordinated anionic complexes [OsO4Cl]?, [OsO4N3]?, and [ReO3Cl2]? were isolated as tetraphenylphosphonium salts from reactions of OsO4 and ReO3Cl with PPh4Cl and PPh4N3, respectively, in dichloromethane solution. The compounds which are characterized by their i.r. spectra, are thermally sensitive and form crystalline powders with colours ranging from orange to violet. The crystal structure of PPh4[OsO4Cl] · CH2Cl2 was determined and refined with X-ray diffraction data. (4212 independent, observed reflexions, R = 0.032). It crystallizes in the monoclinic space group P2/b with four formula units per unit cell. The cell dimensions are at ?110°C a = 1754, b = 2184 pm, c = 692 and γ = 106.7°. The structure consists of tetraphenylphosphonium cations and anions [OsO4Cl]? with five-coordinated Os atoms in a trigonal bipyramidal geometry with the chlorine ligand in an axial position. The anion can also be regarded as a OsO4 tetrahedron, monocapped by a chloride ion. Each chloride ion is linked with two CH2Cl2 molecules via hydrogen bridges, forming chains in the direction c. The Os? Cl bond length (276 pm) is very long; the average OsO distance (172 pm) corresponds to that in the OsO4 molecule (170 pm).  相似文献   

7.
S4N3[ReCl4(NSCl)2]?. Synthesis and Crystal Structure S4N3[ReCl4(NSCl)2]? is formed as a byproduct in the reaction of Re2(CO)10 with excess trithiazyl chloride. The compound is characterized by a crystal structure analysis by X-ray methods. S4N3[ReCl4(NSCl)2] crystallizes in the noncentrosymmetric space group P212121 with four formula units per unit cell and the lattice dimensions a = 980, b = 1205, c = 1362 pm (2376 observed, independent reflexions; R = 0.076). The compound consists of the well known cyclic planar S4N3-cations and anions [ReCl4(NSCl)2]?, in which the rhenium atom is coordinated octahedral by four Cl atoms and two cis-positioned NSCl ligands. The mean Re? N and N? S bond lengths (177 pm and 158 pm) correspond to double bonds. The bond lengths and angles are much like in the structure of AsPh4[ReCl4(NSCl)2]; however the chlorine atoms of the NSCl ligands are turned to each other.  相似文献   

8.
Formation of PPh4[WOCl4 · THF] and PPh4Cl · 4As4S3 from W(CO)6 and PPh4[As2SCl5] and their Crystal Structures When W(CO)6 and PPh4[As2SCl5] are irradiated with UV light in tetrahydrofurane, PPh4[WOCl4 · THF], PPh4 Cl· 4As4S3 and PPh4[Cl2H] are obtained. X-ray crystal structure determinations were performed. PPh4[WOCl4 · THF], monoclinic, space group P21/c, Z = 4, a = 1207.5(2), b = 1003.7(2), c = 2642.0(5) pm, β = 114.71(1)°, R = 0.049% for 2824 reflexions; PPh4+ and [WOCl4. THF]? ions are present, the WOCl4 group having the shape of a tetragonal Pyramid with a short W ? O bond (169 pm) and the THF molecule being weakly associated (W? O 236 pm). PPh4Cl · 4AsS3, tetragonal, I41/a, Z = 4, a = 1742.3(3), c = 1664.5(4) pm, R = 0.066% for 1350 reflexions; it consists of separate PPh4+ and Cl? ions and As4S3 molecules.  相似文献   

9.
E.P.R. and Ligand Field Spectra of Chlorovanadates(IV). The Crystal Structure of PPh4[VxTi2–xCl9] (x = 0.15) Black, moisture-sensitive crystals of PPh4[VxTi2–xCl9] (x = 0.15) are formed by the reaction of titanium tetrachloride and PPh4[VCl5] in dichloromethane. Its EPR and ligand field spectra as well as those of PPh4[VCl5] and (PPh4)2[V2Cl9][VCl5] · CH2Cl2 were recorded. In the mixed crystals of PPh4[V0.15Ti1.85Cl9], the existence of [VTiCl9]? ions consisting of trigonally distorted, face sharing octahedra can be proven by the spectra. The spectra of the compounds with [VCl5]? ions can only be explained when a significant Jahn-Teller distortion of the trigonal bipyramids is assumed; this distortion was not detected in the crystal structure determination of (PPh4)2[V2Cl9][VCl5] · CH2Cl2. The crystal structure of PPh4[V0.15Ti1.85Cl9] was determined by X-ray diffraction (2588 independent observed reflexions, R = 0.044). Crystal data: triclinic, space group P1 , a = 1090.4, b = 1217.4, c = 1287.7 pm, α = 73.19°, β = 69.87°, γ = 82.15°, Z = 2. The compound consists of PPh4 and [V0.15Ti1.85Cl9]? ions. In the anions, Ti and V atoms are distributed statistically in the two face sharing octahedra.  相似文献   

10.
Crystal Structures of [ReCl4(PhC?CPh)]2 · 2 CH2Cl2 and PPh4[ReOCl4] Single crystals of [ReCl4(PhC?CPh)]2 · 2 CH2Cl2 were obtained by chilling dilute solutions of the solvate [ReCl4(PhC?CPh)POCl3] in CH2Cl2. PPh4[ReOCl4] was formed by the reaction of the diphenyl acetylene complex [ReCl5(PhC?CPh)] with PPh4Cl · H2O in CH2Cl2 solution. [ReCl4(PhC?CPh)]2 · 2 CH2Cl2: space group P21/c, Z = 2, 2244 observed independent reflexions, R = 0.038. Lattice parameters (19°C): a = 987.2 pm; b = 1533.9 pm; c = 1193.8 pm; β = 90.17° The compound forms centrosymmetrical dimeric molecules with ReCl2Re bridges with Re? Cl distances of 241.2 and 267.6 pm. The longer Re? Cl bond is situated in trans-position to the equatorial, side-on coordinated diphenyl acetylene ligand with mean Re? C distances of 200 pm. PPh4[ReOCl4]: space group P4/n, Z = 2, 1487 observed, independent reflexions, R = 0.047. Lattice parameters (19°C): a = b = 1272.0 pm; c = 771.3 pm. The compound crystallizes in the AsPh4[RuNCl4] type; it consists of [ReOCl4]? anions and PPh4+ cations. The anions are tetragonal with C4v symmetry and bond lengths Re? O = 165.4 pm and Re? Cl = 232.6 pm; the bond angle OReCl is 106.7°.  相似文献   

11.
3-Chloro-1,2,3,4-tetraphenylcyclobutenyl-Ennea-chloro-μ-Oxo-di-Niobate(V), [C4Cl(Ph)4][Nb2OCl9]?. Synthesis and Crystal Structure The title compound yields from a one step reaction of niobium pentachloride and niobium oxide trichloride with diphenyl acetylene in dichloro methane, forming dark green crystals. The new complex is characterized by the i.r. spectrum and a crystal structure determination by X-ray methods. The compound crystallizes triclinic in the space group P1 with two formula units per unit cell (2253 independent observed reflexions, R = 4.7%). The lattice dimensions are a = 1199, b = 1034, c = 1453 pm; α = 87.0°, β = 108.6°, γ = 96.6°. The cyclobutenyl cation forms an almost planar C4-ring with two pairs of neighbouring C? C bonds of 139 pm and 153 pm. The anion [Nb2OCl9]? displays a nearly linear NbONb axis (bond angle 174°) in which the NbO bond lengths are 176 pm and 208 pm. Two anions are linked via asymmetric chloro bridges with Nb? Cl bond lengths of 248 pm and 270 pm to form a centrosymmetric dimer.  相似文献   

12.
Synthesis and Structure of Ammine and Amido Complexes of Iridium The reaction of (NH4)2[IrCl6] with NH4Cl at 300 °C in a sealed glass ampoule yields the iridium(III) ammine complex (NH4)2[Ir(NH3)Cl5], which crystallizes isotypically with K2[Ir(NH3)Cl5] in the orthorhombic space group Pnma with Z = 4, and a = 1350.0(2); b = 1028.5(3); c = 689.6(2) pm. The reaction of (NH4)2[IrCl6] with NH3 at 300 °C, however, gives the already known [Ir(NH3)5Cl]Cl2 beside a small amount of [Ir(NH3)4Cl2]Cl2. In pure form [Ir(NH3)5Cl]Cl2 is obtained by ammonolysis of (NH4)2[Ir(NH3)Cl5] at 300 °C with NH3. [Ir(NH3)4Cl2]Cl2 crystallizes triclinic (P1, Z = 1, a = 660,2(3); b = 680,4(3); c = 711,1(2) pm; α = 103,85(2)°, β = 114,54(3)°, γ = 112,75(2)°). The structure contains Cl anions and [Ir(NH3)4Cl2]2+ cations with a trans position of the Cl atoms. Upon reaction of [Ir(NH3)5Cl]Cl2 with Cl2 one ammine ligand is eliminated yielding [Ir(NH3)4Cl2]Cl, which is transformed to orthorhombic [Ir(NH3)4(OH2)Cl]Cl2 (Pnma, Z = 4, a = 1335,1(3); b = 1047,9(2); c = 673,4(2) pm) by crystallization from water. In the octahedral complex [Ir(NH3)4(OH2)Cl]2+ the four ammine ligands have an equatorial position, whereas the Cl atom and the aqua ligand are arranged axial. Oxidation of (NH4)2[Ir(NH3)Cl5] with Cl2 at 330 °C affords the tetragonal IrIV complex (NH4)[Ir(NH3)Cl5] (P4nc, Z = 2, a = 702.68(5); c = 912.89(9) pm). Its structure was determined using the powder diagram. Oxidation of (NH4)2[Ir(NH3)Cl5] with Br2 in water, on the other hand, gives (NH4)2[IrBr6] crystallizing in the K2[PtCl6] type. Oxidation of (PPh4)2[Ir(NH3)Cl5] with PhI(OAc)2 in CH2Cl2 affords the IrV amido complex (PPh4)[Ir(NH2)Cl5].  相似文献   

13.
Reaction of Trichloronitro Methane with Iron Carbonyls. Crystal Structure of (PPh4)2[Fe2OCl6] · 2 CH2Cl2 Trichloronitro methane reacts with Fe2(CO)9 or Fe3(CO)12 forming NO[FeOCl2] which is composed of Nitrosyl ions and polymeric [FeOCl2]?. The reaction of NO[FeOCl2] with POCl3 affords Fe(O2PCl2)3; with tetraphenyl phosphoniumchloride it forms the complex (PPh4)2[Fe2OCl6] which is soluble in CH2Cl2. The oxochloro ferrates are characterized by the aid of 57Fe-Mössbauer spectra and by i.r. spectra. A single crystal of (PPh4)2[Fe2OCl6] · 2 CH2Cl2 was used to carry out a structural investigation by means of X-ray diffraction data (space group P1 , Z = 1, a = 1157.2(2), b = 1363.8(3), c = 1140.3(2) pm, α = 109.22(1)°, β = 95.23(1)°, γ = 67.24(2)°, R = 0.052 for 3814 reflexions with F0 > 3σ). The [Cl3Fe? O? FeCl3]2?-anion is found to have a centre of symmetry and thus, in accordance with the i.r. spectra, contains a linear bridge. High thermal parameters of the bridging oxygen atom and the chlorine ligands, however, allow interpretations as orientation disorder of slightly bent anions.  相似文献   

14.
Thio-chloro Compounds of Pentavalent Niobium and Tungsten: WSCl3, [WSCl4]22?, [WSCl5]2?, [NbSCl4]?. Crystal Structure of PPh4[NbSCl4] Black WSCl3 was obtained by reduction of (WSCl4)2 with C2Cl4. With PPh4Cl in CH2Cl2 it yields (PPh4)2[WSCl4]2 which has a dimeric structure with chloro bridges according to its i. r. spectrum. Iodide reduces PPh3Me[WSCl5] in CH2Cl2 to (PPh3Me)2[WSCl5], from which (PPh3Me)2[WSBr5 · BBr3] is obtained by reaction with BBr3. From PPh4Cl in CH2Cl2 and raw NbSCl3 (obtained by solid state reaction of NbCl5 with B2S3) PPh4[NbSCl4] is formed. The crystal structure of PPh4-[NbSCl4] was determined and refined with X-ray diffraction data (residual index R = 0.066 for 1017 reflexions). It crystallizes in the AsPh4[RuNCl4] structure type (space group P4/n) with the lattice constants a = 1303 and c = 760 pm. The quadratic-pyramidal [NbSCl4]? ion has a Nb?S bond length of 209 pm. The i. r. spectra of all compounds are discussed.  相似文献   

15.
AsPh4[W2Cl4(N3S2)3] · CCl4; Synthesis and Crystal Structure The title compound was obtained in form of black crystals along with other products by the reaction of H2S and AsPh4[WCl4(N3S2)] in dichloromethane and subsequent addition of CCl4. Its crystal structure was determined by X-ray diffraction (3036 observed reflexions, R = 0.051). Crystal data: triclinic, space group P¯1, Z = 2, a = 1369, b = 1398, c = 1441 pm, α = 64.8, β = 68.02 and γ = 58.1°. The compound consists of AsPh4 ions, CCl4 molecules and [W2Cl4(N3S2)3]? ions. In the latter, one tungsten atom is member of one planar WN3S2 ring while the second tungsten atom belongs to two such rings forming a nearly planar S2N3WN3S2 unit. Two nitrogen atoms of this unit are linked to the other tungsten atom forming a WN2W ring. Two chloro ligands at each tungsten atom complete the coordination sphere to coordination numbers of six.  相似文献   

16.
(PPh4)2[MoN(N3)3Cl]2; Synthesis, IR Spectrum, and Crystal Structure The title compound is formed in the reaction of molybdenum (II) benzoate with trimethylsilyl azide and PPh4Cl in dichloro methane forming dark red single crystals. A PPh3Me⊕ salt of the ion [MoN(N3)3Cl]22? is obtained from (PPh3Me)2MoNCl4] treated with silver azide in CH2Cl2 suspension. The solvent CH2Cl2 participates in both reactions as oxidizing agent. (PPh4)2[MoN(N3)3Cl2 is characterized by a structural analysis based upon X-ray data: space group P1 , Z = 1, a = 1050.7 pm; b = 1185.4 pm; c = 1190.8 pm; α = 98.90°; β = 106.87°; γ = 103.97° (4505 independent, observed reflexions, R = 0.039). The compound consists of PPh4⊕ cations and centrosymmetric anions [MoN(N3)3Cl22? in which the molybdenum atoms are bridged by the Nα atoms of two azide groups; the resulting Mo? N bond lengths are 208 pm and 260 pm. In trans position to the long Mo? N bond the terminal nitrido ligand is situated, the Mo?N distance of 164 pm corresponds to a triple bond. Two terminal azido ligands and the chloro ligand are filling up the coordination sphere of the molybdenum atoms to a coordination number of six. The i.r. spectrum is reported and assigned.  相似文献   

17.
Azido Complexes of Manganese(II) and Cobalt(II). Crystal Structures of (PPh4)2[Mn(N3)4] and PPh42[Co(N3)3Cl] (PPh4)2[Mn(N3)4] and (PPh4)2[Co(N3)3Cl] were obtained as light-brown and green blue, nonexplosive crystalline compounds, respectively. They are only slightly sensitive to moisture and were obtained from the tetrachloro complexes (PPh4)2MCl4 by reactions with silver azide in dichloromethane. The compounds were characterized by thier i.r. spectra and by crystal structure analyses. Both crystallized in the monoclinic space group C2/c, Z = 4, but they are not isotypic. (PPh4)2[Mn(N3)4]: structure determination with 711 independent reflexions, R = 0.097; a = 2249.1, b = 1499.6, c = 1370.3 pm, β = 104.86°. (PPh4)2[Co(N3)Cl]: 2753 reflexions, R = 0.075; a = 1119.7, b = 1899.2, c = 2115.4 pm, β = 90.47°. The structures consist of PPh4+ ions and of anions that are situated on twofold crystallographic rotation axes. The anions show positional disorder, statistically assuming two different orientations with probabilities of 50% each; in the case of [Co(N3)3Cl]2?, the Cl atom is superimposed statistically with an azido group, whereas the [Mn(N3)4]2? ion is tilted by about 20° from the ideal position to two sides of the crystallographic axis. In both compounds the cation form layers and the anions are located between the layers.  相似文献   

18.
Synthesis and Crystal Structure of [Se3N2Cl]+GaCl4? [Se3N2Cl]+GaCl4? has been prepared by the reduction of [Se2NCl2]+GaC14? with SbPh3 in CH2Cl2 solution, forming red crystals, which were characterized by an X-ray structure determination. Space group P21/n, Z = 4, 1640 observed unique reflections, R = 0.050. Lattice dimensions at ? 80 °C: a = 929.4(1), b= 1078.8(1), c = 1135.7(1) pm, β = 92.026(9)°. The cations from nearly planar Se3N2 five membered rings with Se? N bond lengths from 170 to 176pm and a Se? Se bond of 242.2 pm. One of the selenium atoms is bonded to the chlorine atom.  相似文献   

19.
Azidocuprates(II). Crystal Structure of (PPh4)2[Cu2(N3)6] (PPh4)2[Cu(N3)4] and (PPh4)2[Cu2(N3)6], which is already known, are prepared from the corresponding chloro cuprates and excess silver azide in dichloro methane suspension. The azido cuprates form nonexplosive brown crystals of low sensitivity to moisture and are characterized by i.r. spectroscopy. (PPh4)2[Cu2(N3)6] was submitted to a X-ray crystallographic structural analysis (4284 observed, independent reflexions, R = 0.034). The compound crystallizes triclinic in the space group P1 with one formula unit per unit cell. The lattice parameters are a = 1047.4 pm; b = 1131.1 pm; c = 1179.4 pm; α = 101.26°; β = 109.31°; γ = 103.42°. The compound consists of PPh4 cations and centrosymmetric anions [Cu2(N3)6]2?, which meet D2h-symmetry fairly well. In the anions the copper atoms are linked to a planar Cu2N2 four-membered ring by the N α atoms of two azide groups. The other azido ligands are bonded terminally and complete coordination number 4 at the Cu atoms which show planar geometry.  相似文献   

20.
N(SCl)2 [MoCl5(NSCl)]?, a Chlorothionitrene Complex of Molybdenum (VI) . The title compound is formed together with MoCl3(N3S2) by the reaction of MoCl4 or MoCl5 with (NSCl)3 in CH2Cl2. The black, crystalline compound was characterized by its i.r. spectrum and an X-ray crystal structure determination. N(SCl)2[MoCl5(NSCl)]? crystallizes in the monoclinic space group P21/n with four formula units per unit cell. The lattice constants are a = 716.3, b = 1627.4, c = 1178.9 pm and β = 100.90°. The [MoCl5(NSCl)]? ion posseses an almost linear Mo = N = S grouping with bond lengths that can be interpreted as double bonds. Crystal data for AsPh4[MoCl5(NSCl)] are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号