首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Eu3+-doped La2O3 nanocrystalline powder was prepared by polymer complex solution method and further used for preparation of Eu3+-doped La(OH)3. Structural and optical characterization was carried out by powder X-ray diffraction and photoluminescent spectroscopy. XRD measurements confirmed the formation of hexagonal La2O3 and its recrystallization into La(OH)3 in a humid atmosphere. Excitation spectra show redshift of host lattice and charge transfer emission bands in La(OH)3 while bands that correspond to Eu3+f–f transitions are placed at same wavelengths in both samples. Photoluminescence spectra recorded over the temperature range from 10 K to 300 K show that intensities of emission lines in Eu3+-doped La2O3 do not depend on temperature as much as in La(OH)3 sample. Observed dominant 5D07F2 and markedly visible 5D07F0 emissions in doped La2O3 indicate that Eu3+ ion is located in a structural site without an inversion center. On the other hand, in Eu3+-doped La(OH)35D07F0 transition is barely visible while 5D07F2 is not prominent, and with temperature drop three 5D07FJ (J=1, 2, 4) transitions become almost of the same intensity. In both La2O3 and La(OH)3 structures Eu3+ ion replaces La3+ in non-centrosymmetric C3v and C3h crystallographic sites, respectively, and difference in symmetry of the crystal field around europium ion is explained by comparing shape and volume of these sites. Decay times of the 5D0- level recorded over the temperature range 10−300 K revealed that emission lifetime values in La2O3 (~0.7 ms) are almost two times higher than in La(OH)3 (~0.4 ms), and unlike in La2O3, lifetime in La(OH)3 is temperature dependent.  相似文献   

2.
Synthesis and photoluminescence (PL) investigations of lithium metasilicate doped with Eu3+, Tb3+ and Ce3+ were carried out. PL spectra of Eu-doped sample showed peaks corresponding to the 5D07Fj (j=1, 2, 3 and 4) transitions under ultraviolet excitation. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in structurally disordered environment. Tb3+-doped silicate sample showed blue-green emission corresponding to the 5D47Fj (j=6, 5 and 4) transitions. Ce-doped sample under excitation from UV, showed a broad emission band in the region 350-370 nm with shoulders around 410 nm. The fluorescence lifetimes of Eu3+ and Tb3+ ions were found out to be 790 and 600 μs, respectively. For Ce3+, the lifetime was of the order of 45 ns. PL spectra of the europium- and terbium-doped samples were compared with commercial red (Y2O3:Eu3+) and green (LaPO4:Tb3+) phosphors, respectively. It was found that the emission from the doped silicate sample was 37% of the commercial phosphor in case of the Tb-doped sample and 8% of the commercial phosphor in case of the Eu-doped sample.  相似文献   

3.
In this paper, seven kinds of silane coupling reagents were employed as silicate sources to prepare CaSiO3:Eu3+ phosphors by the sol-gel method. The different silicate precursors were used to adjust the microstructure and size of the resulting phosphors. The crystallite size of phosphors is in the range of 30-35 nm and some of them show regular microstructure after high-temperature thermolysis. The photoluminescence properties show that all of them exhibit the characteristic fluorescence 5D07FJ (J=0, 1, 2, 3, 4) of the Eu3+ ion and the strongest one is the red emission at 610 nm. Furthermore, the emission quantum efficiency (η) of the 5D0 Eu3+ excited state has been calculated to be around 33% from the emission spectrum and the lifetime of the Eu3+ first excited level (τ, 5D0).  相似文献   

4.
A series of NaY1−yEuy(WO4)2−x(MoO4)x (x=0−2 and y=0.06−0.15) phosphors have been prepared by a combustion route. X-ray powder diffraction, photoluminescence excitation and emission spectra were used to characterize the resulting samples. The excitation spectra of these phosphors show the strongest absorption at about 396 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. Their emission spectra show an intense red emission at 616 nm due to the 5D07F2 electric dipole transition of Eu3+. As the Mo content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm increases and reaches a maximum when the relative ratio of Mo/W is 2:3. The intense red-emission of the tungstomolybdate phosphors at near-UV excitation suggests that the material is a potential candidate for white light emitting diode (WLEDs).  相似文献   

5.
In this work, Eu3+-doped lead borosilicate glasses (SiO2-B2O3-PbO2) synthesized by fusion method had their optical properties investigated as a function of temperature. Atomic Force Microscopy images obtained for a glass matrix annealed at 350 and 500 °C show a precipitated crystalline phase with sizes 11 and 21 nm, respectively. Besides, as the temperature increases from 350 to 300 K a strong Eu3+ photoluminescence (PL) enhancement takes place. This anomalous feature is attributed to the thermally activated carrier transfer process from nanocrystals and charged intrinsic defects states to Eu3+ energy levels. In addition, the PL peaks in this temperature range were assigned to the Eu3+ transitions 5D07F2, at 612 nm, 5D07F1, at 595 nm, and 5D07F0, at 585 nm. It was also observed that the 5D07F3 and 5D07F4 PL bands at 655 and 700 nm, respectively, show a continuous decrease in intensity as the temperature increases.  相似文献   

6.
In this work, we have investigated the photoluminescence spectra of europium-doped zinc oxide crystallites prepared by a vibrating milled solid-state reaction method. X-ray diffraction, scanning electron microscopy, luminescence spectra and time-resolved spectra analysis were used to characterize the synthetic ZnO:Eu3+ powders. XRD results of the powders showed a typical wurtzite hexagonal crystal structure. A second phase occurred at 5 mol% Eu2O3-doped ZnO. The 5D0-7F1 (590 nm) and 5D0-7F2 (609 nm) emission characteristics of Eu3+ appeared after quenching with more than 1.5 mol% Eu2O3 doping. The Commission Internationale d’Eclairage (CIE) chromaticity coordinates of a ZnO:Eu3+ host excited at λex=467 nm revealed a red-shift phenomenon with increase in Eu3+ ion doping. The lifetime of the Eu3+ ion decreased as the doping concentration was increased from 1.5 to 10 mol%, and the time-resolved 5D07F2 transition presents a single-exponential decay behavior.  相似文献   

7.
Newly synthesized reference MgLaLiSi2O7 and red luminescent Eu3+:MgLaLiSi2O7 powder phosphors have been successfully developed by a solid-state reaction method to analyze their emission and structural properties from the measurement of their XRD, SEM, FTIR and PL spectra. Emission spectra of Eu3+ powder phosphors have shown strong red emissions at 613 nm (5D07F2). These phosphors have also shown bright red emissions under a UV source. Based on the red emission performance, the Eu3+ concentration has been optimized to be at 0.3 mol%.  相似文献   

8.
Tb-doped SrSi2O2N2 phosphors with promising luminescent properties were synthesized by the conventional solid-state reaction method, characterized by powder X-ray diffraction and studied by photoluminescence excitation and emission spectra. The synthesized materials exhibited a weak blue emission and a strong green emission in the region of 400-470 nm and 480-650 nm, which are attributed to 5D37Fj (j=5, 4, 3) and 5D47Fj (j=6, 5, 4, 3) transitions of Tb3+, respectively. The green emission from 5D47F5 at 543 nm showed the highest intensity under the optimized concentration of 0.1 mol, after which the quenching concentration became relevant. The quenching behavior of the emission of Tb3+ was explained by the cross-relaxation of its excited state.  相似文献   

9.
La2BaZnO5:Eu3+ (0.05 mol%) was prepared by a solid-state reaction at high temperature. X-ray powder diffraction analysis confirmed the formation of single phase La2BaZnO5. Luminescence properties of La2BaZnO5:Eu3+ are investigated by site-selective laser-excitation and emission spectroscopy at 18 K. Two different crystallographic sites for Eu3+ corresponding to the La3+ and Ba2+ sites are identified from the 7F05D0 excitation spectra obtained by monitoring the 5D07FJ (J=1, 2, …, 6) emissions. It is found that Eu3+ substituted for the Ba2+ ion experiences stronger crystal-field strength than Eu3+ substituted for the La3+ ion. Energy transfer between the two crystallographic Eu3+ centers is investigated by luminescence decay curves at 18 K.  相似文献   

10.
The Na9[EuW10O36]·14H2O polyoxometalate studied here has shown a peculiar 4f-4f emission spectrum that has two main differences in comparison to data reported previously in the literature: a 5D07F0 line with much smaller intensity and an abnormally high intensity of the 5D07F4 transition. These results have been theoretically interpreted in terms of the Ωλ intensity parameters and their dependence on the nature and local symmetry of the chemical environment around the Eu3+ ion, leading to the conclusion that the chemical environment is highly polarizable with a local symmetry corresponding to a slightly distorted D4d coordination geometry. Further evidences corroborating this interpretation were obtained by progressively dissolving the polyoxometalate in water, inducing a progressive accommodation of the coordination polyhedron towards lower symmetries.  相似文献   

11.
A dinuclear Eu (III) complex Eu2(dbt)3·4H2O was synthesized, where H2dbt was 2,8-bis(4′,4′,4′,-trifluoro-1′,3′-dioxobutyl)-dibenzothiophene. The complex emits the characteristic red luminescence of Eu3+ ion due to the 5D07FJ(J=0-4) transitions under 395 nm-light excitation with a luminescent quantum efficiency of 17%. The complex is thermally stable up to 280 °C. It was found that the complex can be effectively excited by a 395 nm-emitting InGaN chip. Bright red light was obtained using the complex as light color-conversion material.  相似文献   

12.
A series of red phosphors R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) have been synthesized by sol-gel method. The crystallization processes of the phosphor precursors were characterized by X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA), and the properties of these resulting phosphors have also been characterized by photoluminescence (PL) spectra and reflectance spectra. Field emission scanning electron microscopy (FE-SEM) was also used to characterize the shape and the size of the samples. The results of TG-DTA and XRD indicated that all of the R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) phosphors crystallized completely at 650 °C. Y0.8Eu1.2(MoO4)3 and Gd0.8Eu1.2(MoO4)3 have two structures, monoclinic and orthorhombic, while La0.8Eu1.2(MoO4)3 only adopts monoclinic structure. The luminescent properties of phosphors R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) are dependent on their structures to some extent. The orthorhombic Y0.8Eu1.2(MoO4)3 and Gd0.8Eu1.2(MoO4)3 phosphors show very similar luminescent properties, which differ from those of phosphors with monoclinic structure. For all of R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) phosphors, intense red emission is obtained by exciting at ∼394 and ∼465 nm which are owing to the sharp 7F05L6 and 7F05D2 lines of Eu3+. Two strongest lines at 394 and 465 nm in excitation spectra of these phosphors match well with the two popular emissions from near-UV and blue GaN-based LEDs, so they could be used as red components for white light-emitting diodes.  相似文献   

13.
YBO3:Eu3+/Tb3+ nanocrystalline thin films were successfully deposited onto quartz glass substrates by Pechini sol-gel dip-coating method, using rare-earth nitrates and boric acid as starting materials. The crystal structure, morphology, chemical composition and photoluminescence property of the films were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and fluorescence spectrophotometer. The results of XRD, AFM, XPS and FTIR revealed that the films were composed of spherical YBO3:Eu3+/Tb3+ nanocrystals with average grain size of 80 nm. The YBO3:Eu3+ film exhibited strong orange emission at 595 nm and red emission at 615 nm, which were, respectively ascribed to the (5D07F1) and (5D07F2) transitions of Eu3+. The YBO3:Tb3+ film showed dominant green emission at 545 nm due to the 5D4-7F5 transition of Tb3+.  相似文献   

14.
Eu3+ activated M6AlP5O20 (where M=Sr/Ba/Mg) phosphors prepared by combustion synthesis and the completion of the synthesis was confirm by XRD (X-ray diffraction) patterns. The surface morphology studied by scanning electron microscopy (SEM) and photoluminescence (PL) properties has been reported in this paper. The Eu3+ PL emission spectrum was observed in M6AlP5O20 phosphors (where M=Sr/Ba/Mg) at 592 (orange) and 618 nm (red) region, the spectrum due to 5D07F1 and 5D07F2 transitions at mercury free excitation, respectively. Its considerable emission intensity under 350 nm excitations makes it possible candidate materials as red component of tricolor luminescence materials and for near ultra violet light emitting diode (n-UVLED) phosphors.  相似文献   

15.
A red-emitting phosphor NaSrB5O9:Eu3+ was synthesized by employing a solid-state reaction (SSR) method. The structures of the phosphors were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) and Raman studies. The band at ~282 nm in the excitation spectra indicated the charge transfer band (CTB) of B-O in the host, whereas the CTB of Eu-O was observed at ~275 nm for the NaSrB5O9:Eu3+ (Eu3+=1 at.%) phosphor, which was supported by diffuse reflectance spectroscopy (DRS) measurements. The photoluminescence (PL) measurements exhibited a strong red emission band centered at about 616 nm (5D07F2) under an excitation wavelength of 394 nm (7F05L6). Upon host excitation at 282 nm, the pristine NaSrB5O9 exhibited a broad UV emission centered at ~362 nm. The energy transfer from host to Eu3+ ions was confirmed from luminescence spectra, excited with a 355 nm Nd:YAG laser. In addition, the asymmetric ratios indicate a higher local symmetry around the Eu3+ ion in the host. The calculated CIE (Commission International de l′Eclairage) coordinates displayed excellent color purity efficiencies (around 99.7%) compared to other luminescent materials.  相似文献   

16.
Y2−xTbxSiO5 and Y2−xEuxSiO5 nanophosphors with seven different kinds of silicate sources were synthesized by sol-gel method. The structures have been investigated to be composed of nanometer-size grains of 30-60 nm through X-ray diffraction (XRD) and scanning electron microscopy (SEM) was used to compare the different morphology of patterns from seven different silicon sources. The photoluminescence of Y2−xTbxSiO5 was investigated as a function of silicate sources and the results revealed that these nanometer materials showed the characteristic emission 5D4 → 7FJ (J = 6, 5, 4, 3) of Tb ions. The characteristic emission 5D0 → 7FJ (J = 1, 2, 4) of Eu ions was also found in the materials of Y2−xEuxSiO5.  相似文献   

17.
Fluorophosphate glasses of composition, P2O5 + K2O + KF + MO + Al2O3 + xEu2O3 (M = Mg, Sr and Ba; x = 0.01, 0.05, 0.1, 1.0, 2.0, 4.0 and 6.0 mol%) were prepared and characterized their optical properties. Crystal-field (CF) analysis revealed a relatively weak CF strength around Eu3+ ions in the Ba based fluorophosphate glasses. The Judd-Ofelt parameters have been estimated from the oscillator strengths of 7F0 → 5D2, 7F0 → 5D4 and 7F0 → 5L6 absorption transitions of Eu3+ ions and were used to evaluate the radiative properties of the 5D0 → 7FJ (J = 0-4) transitions. Considerable variation has been observed in the relative intensity ratio of 5D0 → 7F2 to 5D0 → 7F1 transitions of Eu3+ ions due to change in the alkaline earth metal ions. The decay of the 5D0 level shows single exponential and less sensitive to Eu3+ ions concentration as well as MgO/SrO/BaO modifiers.  相似文献   

18.
A sol-gel technique emphasizing the Pechini process has been employed for the preparation of nano-crystal Eu3+-doped YVO4 phosphor. The precursor powders were heated at 800 °C for 3 h to obtain good crystallinity with better luminescence. XRD results indicate that the second phase is not presented when the Eu3+ ion concentration is increased up to 50 mol%. The absorption and photoluminescent (PL) studies indicated that the energy is absorbed first by the host and then transferred to the emitting level of the Eu3+ ions. Excitation at 318 nm in terms of Eu3+ concentrations in YVO4 powders shows that the YVO4 phosphors display bright red luminescence at about 618 nm belonging to the 5D07F2 electric dipole transition, and a weak band in the orange region of the 5D07F1 transition at 594 nm. In addition, the time-resolved 5D07F2 transition presents a single-exponential decay behavior, revealing the decay mechanism of the 5D07F2 transition is a single decay component between Eu3+ ions only. The saturation of the emission intensity excited by the CTS when the Eu3+ concentration is 10 mol%. The concentration quenching is active when the Eu3+ concentration is larger than 10 mol%, and the critical distance is about 5.75 Å.  相似文献   

19.
Eu3+ ion-doped B2O3-, SiO2-, and P2O5-based glasses were prepared by the melt-quenching method, and their absorption, fluorescence, and excitation spectra were recorded and assigned. The glass composition dependence of the fluorescence was investigated to obtain the high brightness of the red fluorescence due to the 5D07F2 transition of the Eu3+ ion. The integrated intensity of the red fluorescence was the strongest at the Eu2O3 concentration of 3.5 mol% because the cross-relaxation (CR) processes, (5L65DJ)→(7FJ*7FJ#) and (5DJ5DJ)→(7FJ*7FJ#) (3≧J>J′≧0, 6≧J*>J#≧0) between the Eu3+ ions were promoted, but the CR processes, (5D07FJ)→∑m(7FJ*7FJ)m (6≧J′≧0, 6≧J*>J≧0), between the excited Eu3+ ion at the 5D0 level and m ions of Eu3+ in the 7FJ levels were depressed. The former CR processes, (5L65DJ)→(7FJ*7FJ#) and (5DJ5DJ)→(7FJ*7FJ#) were enhanced in the host glasses consisted of the cations with small ionic radius. In this study, a 70B2O3-30CaO-3.5Eu2O3 glass showed the strongest red fluorescence.  相似文献   

20.
Using the 2,5-bis(2-pyridyl)-1,3,4-thiadiazole (bptd), we recently prepared [Cu2(bptd) (H2O) Cl4] and [Ni2(bptd)2 (H2O)4] Cl4, 3H2O in which the magnetic centres are connected through one diazine+one chloro and two diazine ligand bridges, respectively. These two compounds are the first examples that show null intramolecular magnetic interactions despite M-M distances close to 3.7 Å within perfectly planar edifices:Down to , [Cu2(bptd)Cl4(H2O)] is paramagnetic while, below Tt, half of the Cu2+ions interact, leading to residual paramagnetism of one Cu2+/f.u. Magnetic susceptibility measurements, EPR and pulsed EPR study indicate the original intermolecular nature of AF exchanges.[Ni2(bptd)2(H2O)4]Cl4·3H2O susceptibility obeys a Curie-law involving pure paramagnetism. Moreover, its EPR spectrum can be interpreted on the basis of virtual S=1 monomers. Below 70 K, Zero Field Splitting (D∼275 G) due to dipolar interactions without magnetic exchanges could be responsible for the LT spectra splitting. For both compounds, the thia role is suggested as partially responsible for the null-in-plane magnetic exchanges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号