首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
The xZnO-(1−x)α-Fe2O3 nanoparticles system has been obtained by mechanochemical activation for x=0.1, 0.3 and 0.5 and for ball milling times ranging from 2 to 24 h. Structural and morphological characteristics of the zinc-doped hematite system were investigated by X-ray diffraction (XRD) and Mössbauer spectroscopy. The Rietveld structure of the XRD spectra yielded the dependence of the particle size and lattice constant on the amount x of Zn substitutions and as function of the ball milling time. The x=0.1 XRD spectra are consistent with line broadening as Zn substitutes Fe in the hematite structure and the appearance of the zinc ferrite phase at milling times longer than 4 h. Similar results were obtained for x=0.3, while for x=0.5 the zinc ferrite phase occurred at 2 h and entirely dominated the spectrum at 24 h milling time. The Mössbauer spectra corresponding to x=0.1 exhibit line broadening as the ball milling time increases, in agreement with the model of local atomic environment. Because of this reason, the Mössbauer spectrum for 12 h of milling had to be fitted with two sextets. For x=0.3 and 12 milling hours, the Mössbauer spectrum reveals the occurrence of a quadrupole-split doublet, with the hyperfine parameters characteristic to zinc ferrite, ZnFe2O4. This doublet clearly dominates the Mössbauer spectrum for x=0.5 and 24 h of milling, demonstrating that the entire system of nanoparticles consists finally of zinc ferrite. As ZnO is not soluble in hematite in the bulk form, the present study clearly demonstrates that the solubility limits of an immiscible system can be extended beyond the limits in the solid state by mechanochemical activation. Moreover, this synthesis route allowed us to reach nanometric particle dimensions, which would make the materials very important for gas sensing applications.  相似文献   

2.
Non-stoichiometric ternary chalcogenides (Zn,Fe)S were prepared in the film form by pyrolytic spray deposition technique, using air/nitrogen as the carrier gas. The precursor solution comprised of ZnCl2, FeCl2 and thiourea. The depositions were carried out under optimum conditions of experimental parameters viz. carrier gas (air/nitrogen) flow rate, concentration of precursor constituents, nozzle substrate distance and temperature of quartz substrate. The deposited thin films were later sintered in argon at 1073 K for 120 min.The structural, compositional and optical properties of the sintered thin films were studied. X-ray diffraction studies of the thin films indicated the presence of (Zn,Fe)S solid solution with prominent cubic sphalerite phase while surface morphology as determined by scanning electron microscopy (SEM) revealed a granular structure.The chemical composition of the resulting thin films as analyzed by energy dispersive X-ray analysis (EDAX) reflected the composition of the precursor solutions from which the depositions were carried out with Fe at% values ranging from 0.4 up to 33.SEM micrographs of thin films reveal that the grain sizes of the thin films prepared using air as carrier gas and N2 as carrier gas are in the vicinity of 300 and 150 nm, respectively.The diffuse transmittance measurements for thin films, as a function of wavelength reveal the dependence of direct optical band gap on Fe content and type of phase.  相似文献   

3.
4.
Nanocrystalline Fe particles were successfully prepared by the mechanical milling process using a high-energy planetary ball mill. The physical properties of the samples were investigated as a function of the milling time, t (in the 0-54 h range) by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and Mössbauer spectroscopy. After 54 h of milling, the lattice parameter increases from 0.28620 (3) nm for the starting Fe powder to 0.28667 (3) nm, the grain size decreases from 110 to 13 nm, while the strain increases from 0.09% to 0.7%. The powder particle morphology was observed by SEM at different stages of milling. For t less than 24 h, the Mössbauer spectra are characterized by one sextet corresponding to the crystalline bcc Fe phase, while for t greater than 24 h, the iron particles exhibit a two-component Mössbauer spectrum due to the presence of two phases: the crystallites bcc Fe phase and the grain-boundary region. The appearance and the increase in intensity of the second sextet with t may indicate that the interfacial region effect increases with milling time due to the grain size reduction and a probable disordered state of the grain boundaries.  相似文献   

5.
Nano-crystalline hydroxyapatite (HA), Ca10(PO4)6(OH)2 has been synthesized by a precipitate conversion technique using hydroxide gel at lower temperatures, e.g. 80 °C. HA crystallizes in hexagonal structure (space group: P63/m) having lattice parameters: and and around 17 nm in crystallite-size for the 80 °C-heated sample. SEM micrographs show hexagonal crystallites of average particle dimensions approximately 50×20 nm for 80 °C heated sample. The structure analysis by XRD, FTIR, 1H and 31P MAS NMR show the existence of structural disorder at the particle surface that either does not form hydrogen bonding due to lack of adequate bonding parameters or forms a very weak dipolar bonding. The structural disorder has been explained as a result of chemical interactions between the phosphate groups either with the surface adsorbed water or the hydroxyl groups at the surface of the nano-particles.  相似文献   

6.
Thermal and pressure effects have been investigated on the [Fe(sal2-trien)][Ni(dmit)2] spin crossover complex by means of Mössbauer spectroscopic, calorimetric, X-ray diffraction and magnetic susceptibility measurements. The complex displays a complete thermal spin transition between the and spin states of FeIII near 245 K with a hysteresis loop of ca. 30 K. This transition is characterised by a change of the enthalpy, ΔHHL=7 kJ/mol, entropy, ΔSHL=29 J/Kmol, and the unit cell volume, ΔVHL=15.4 Å3. Under hydrostatic pressures up to 5.7 kbar the thermal transition shifts to higher temperatures by ca. 16 K/kbar. Interestingly, at a low applied pressure of 500 bar the hysteresis loop becomes wider (ca. 61 K) and the transition is blocked at ∼50% upon cooling, indicating a possible (irreversible) structural phase transition under pressure.  相似文献   

7.
CeCoIn5 is an unconventional heavy fermion superconductor with a relatively large transition temperature . NMR measurements of the spin lattice relaxation rate at the In(1) site reveal a significant anisotropy of the fluctuating hyperfine fields, which reverses below 30 K. These results suggest that two-dimensional fluctuations of the Ce 4f moments are relevant for the superconducting pairing.  相似文献   

8.
Nanocrystalline Fe75Si25 powders were prepared by mechanical alloying in a planetary ball mill. The evolution of the microstructure and magnetic properties during the milling process were studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The evolution of non-equilibrium solid solution Fe (Si) during milling was accompanied by refinement of crystallite size down to 10 nm and the introduction of high density of dislocations of the order of 1017 m−2. During the milling process, Fe sites get substituted by Si. This structural change and the resulting disorder are reflected in the lattice parameters and average magnetic moment of the powders milled for various time periods. A progressive increase of coercivity was also observed with increasing milling time. The increase of coercivity could be attributed to the introduction of dislocations and reduction of powder particle size as a function of milling time.  相似文献   

9.
Nanostructured Fe50Co50 powders were prepared by mechanical alloying of Fe and Co elements in a vario-planetary high-energy ball mill. The structural properties, morphology changes and local iron environment variations were investigated as a function of milling time (in the 0-200 h range) by means of X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray analysis and 57Fe Mössbauer spectroscopy. The complete formation of bcc Fe50Co50 solid solution is observed after 100 h milling. As the milling time increases from 0 to 200 h, the lattice parameter decreases from 0.28655 nm for pure Fe to 0.28523 nm, the grain size decreases from 150 to 14 nm, while the meal level of strain increases from 0.0069% to 1.36%. The powder particle morphology at different stages of formation was observed by SEM. The parameters derived from the Mössbauer spectra confirm the beginning of the formation of Fe50Co50 phase at 43 h of milling. After 200 h of milling the average hyperfine magnetic field of 35 T suggests that a disordered bcc Fe-Co solid solution is formed.  相似文献   

10.
The extensive polygonization of 200 nm rutile crystals in high-energy dry milling allowed to study the spectral properties of grain boundaries and adjacent microstrained crystalline matter. Changes in UV, VIS, NIR, IR and FIR spectra during milling were followed. For the UV absorption edge the value of unstrained rutile was retained while residual traces of anatase, intergrown with the rutile phase, continued to act as traps for photoinduced charges. The evolving broad absorption in VIS and NIR could be attributed to electrons weakly bound to defects in the packing of oxygen anions at the grain boundaries, which may relax to face-sharing Ti3+-O octahedra. Among the IR-active lattice vibrations, the narrow Eu(2) band showed a shift to higher frequencies by 15 cm−1 which is definitively not due to phonon confinement or Fröhlich surface modes but probably to coupling of the bulk phonon to a plasmon at the grain boundary. At the external surface of the polygonized primary particle, the regular atomic order is destroyed by milling so that hydroxylation is replaced by physisorption of H2O, as shown by IR and TG.  相似文献   

11.
In this paper, BaMoO4 powders were prepared by the coprecipitation method and processed in a domestic microwave-hydrothermal. The obtained powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman) spectroscopy, ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. The morphology of these powders were investigated by scanning electron microscopy (SEM). SEM micrographs showed that the BaMoO4 powders present a polydisperse particle size distribution. XRD and FT-Raman analyses revealed that the BaMoO4 powders are free of secondary phases and crystallize in a tetragonal structure. UV-vis was employed to determine the optical band gap of this material. PL measurements at room temperature exhibited a maximum emission around 542 nm (green emission) when excited with 488 nm wavelength. This PL behavior was attributed to the existence of intrinsic distortions into the [MoO4] tetrahedron groups in the lattice.  相似文献   

12.
This paper focuses on the preparation of nanocrystalline Fe–Ni powders by mechanical alloying method, which can be used in soft magnetic composites. Fe–10 wt% Ni and Fe–20  wt % Ni alloys were prepared using a high-energy ball mill. The magnetic properties of samples were measured by a BH curve analyzer and microstructures of the samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bcc Fe(Ni) phase formation was identified by XRD and completed after 45 h of milling. It was found that higher milling time resulted in, larger lattice parameter, higher microstrains and smaller crystallite sizes. Also, results showed that with increasing the milling time, coercivity increased and saturation intrinsic flux density firstly increased noticeably and then decreased in higher milling times (>70 h).  相似文献   

13.
Highly oriented and densely packed one-dimensional (1D) polycrystalline Zn nanorods were fabricated on zinc plate without any catalyst at room temperature by bombardment with obliquely incident Ar+ ion via ion irradiation method. The sputtered surfaces were fully covered with Zn nanostructures with diameter and the length around 60 nm and 1.3 μm, respectively, confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystal orientation of the Zn plate was investigated by electron back scattering pattern method (EBSP). The numerical density and morphology of Zn nanostructures (nanoneedle or nanorods) were found to be 2.1 × 106 to 9 × 106/mm2 depending upon the crystal orientation and the atomic density on different crystallographic faces. () faces of Zn polycrystal tended to form more dense nanostructures compared to () faces. This is because of lower atomic density on () faces in comparison with () faces. This indicates that lower atomic density on any crystallographic faces is favorable to form nanostructure of higher density. The outstanding feature of this growth technique is that it provides a new direction for the controllable growth of desired nanostructures of variable density at room temperature without any catalyst. These well-aligned arrays of Zn nanorods/nanoneedle might be a promising material for the future application in nanodevices.  相似文献   

14.
Dielectric measurements for single crystal of betaine arsenate (CH3)3NCH2COO·H3AsO4 connected with the ferroelectric phase transition at 119 K were performed. The temperature dependence of electric permittivity was measured at dc electric fields up to 700 kV/m. The results show significant suppression of the dielectric constant by the application of dc field. Deviation from the classical behavior was observed. The electric permittivity was also measured in the paraelectric phase at constant temperature as a function of electric field intensity up to 700 kV/m. The electric permittivity might be well described by the classical relation with additional term including contribution to permittivity coming from clusters. The fit parameters indicate that the polar-clusters carries polarization P0=0.7- with the clusters size of L=12-20 nm.  相似文献   

15.
Magnesium oxide (MgO) nano-size powder is synthesized using magnesium nitrate hexahydrate and oxalic acid as precursors with ethanol as a solvent. The process involves gel formation, drying at 100 °C for 24 h to form magnesium oxalate dihydrate [α-MgC2O4·2H2O] and its decomposition at 500, 600, 800, and 1000 °C for 2 h to yield MgO powder (average crystallite size ∼6.5-73.5 nm). The sol-gel products at various stages of synthesis are characterized for their thermal behaviour, phase, microstructure, optical absorption, and presence of hydroxyl and other groups like OCO, CO, C-C, etc. MgO powder is shown to possess an f.c.c. (NaCl-type) structure with lattice parameter increasing with decrease in crystallite size (tav); typical value being ∼4.222(2) Å for tav∼6.5 nm as against the bulk value of 4.211 Å. Infrared absorption has shown MgO to be highly reactive with water. Also, a variety of F- and M-defect centres found in MgO produce energy levels within the band gap (7.8 eV), which make it attractive for application in plasma displays for increasing secondary electron emission and reducing flickering effects. The possible application of the intermediate sol-gel products, viz., α-MgC2O4·2H2O and anhydrous magnesium oxalate (MgC2O4) in understanding the plants and ESR dosimetry, respectively, has also been suggested.  相似文献   

16.
High coercivity nanostructured YCo5 powders were successfully prepared by mechanical milling of as-cast alloys and subsequent vacuum annealing. Almost single phase YCo5 alloys, obtained by arc melting, were processed by high energy mechanical milling using a SPEX 8000 mill. After 4 h of milling, powders become nearly amorphous. DSC scans revealed the existence of an irreversible broad exothermic transition with a maximum at 516 °C associated with the crystallization process. Annealing in high vacuum at 800 °C during 2.5 min led to the formation of YCo5 nanoparticles with an average particle size of 12 nm. A high intrinsic coercivity of 7.23 kOe together with a σr/σs ratio of 0.75 were obtained.  相似文献   

17.
The general expressions for the compliance , Young's modulus E(h k l) and Poisson's ratio υ(h k lθ) along arbitrary loading direction [h k l] are given for cubic crystals. The representation surface for which the length of the radius vector in the [h k l] direction equals to E(h k l) and representation curve for which the length of the radius vector with angle θ deviated from the reference directions , and equals to υ(100, θ), υ(110, θ) and υ(111, θ) for example, are constructed for six FCC metals Ag, Al, Au, Cu, Ni, Pb and seven BCC metals Cr, Fe, Mo, Nb, Ta, V, W.  相似文献   

18.
A new molecular solid, [1-(4′-bromo-2′-fluorobenzyl)-4-dimetylaminopyridinium]-bis(maleonitriledithiolato)nickel(III), (BrFBzPyN(CH3)2(Ni(mnt)2)(1), has been prepared and characterized by elemental analyses, IR, ESI-MS spectra, single crystal X-ray diffraction and magnetic measurements. Compound 1 crystallizes in the orthorhombic space group Pnma, a=20.579(4) Å, b=7.078(1) Å, c=17.942(4) Å, α=β=γ=90°, V=2613.3(9) Å3, Z=4. The Ni(III) ions of 1 form a quasi-one-dimensional Zigzag magnetic chain within a Ni(mnt)2 column through Ni?S, S?S, Ni?Ni, or π?π interactions with an Ni?Ni distance of 4.227 Å. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 exhibits a spin-gap transition around 200 K, and antiferromagnetic interaction in the high-temperature phase (HT) and spin gap in the low-temperature phase (LT). The transition for 1 is second-order phase transition as determined by DSC analyses.  相似文献   

19.
Coverage-dependent adsorption energy of the Ge/Ru(0 0 0 1) growth system and the geometrical distortions of the most stable adsorption structure are investigated through first-principles calculations within density functional theory. A local minimum in adsorption energy is found to be at a Ge coverage of 1/7 monolayer with a Ru(0 0 0 1)- symmetry. Based on this stale superstructure, the scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) images are simulated by means of surface local-density of states (LDOS). The results are consistent well with the STM measurements on the phase for Ge overlayer on Ru(0 0 0 1). From this stimulation, the relations between the STM images and the lattice distortion are also clarified.  相似文献   

20.
Nanocrystalline fluorite-like structures of Ce1−xAlxO2−δ compounds were prepared by the chemical precipitation method using cerium chloride and aluminium chloride as precursors. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). The effects of aluminium doping concentration and annealing on particle size, lattice parameter and band gap energies were investigated. The particle size of Al-doped CeO2 samples were found to decrease with Al concentration and it increases from 6 to 20 nm as annealing temperature increases to 900 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号