首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of oxides of internal perfluoroolefins 1-3 with urea gave two kinds of novel fluorine containing N-heterocyclic compounds depending on the solvent nature: 1,5-bis(perfluoroalkyl)tetraazabicyclo[3.3.0]octane-3,7-diones 4a-c and 2-amino-5-fluoro-4,5-bis(perfluoroalkyl)-4,5-dihydrooxazol-4-ols 7a-d. Use of polar dimethylsulfoxide, N,N-dimethylacetamide and acetonitrile afforded glycolurils 4a-c in moderate yields. In dioxane, unexpected cyclization occurred resulting in oxazolines 7a-d in high yields. A similar reaction of oxiranes 2, 3 with urea in aqueous dioxane gave mixtures of 4,5-dihydroxy-4,5-bis(perfluoroalkyl)imidazolidine-2-ones 9b, c, glycolurils 4b, c and oxazolines 7b-d. The molecular structure of trans-isomers of oxazoline 7b and imidazolidine 9b has been established by X-ray crystallography.  相似文献   

2.
(5Z,5′Z)-3,3′-(1,4-Phenylenebis(methylene)-bis-(5-arylidene-2-thioxothiazolidin-4-one) derivatives (5a-r) have been synthesized by the condensation reaction of 3,3′-(1,4- or 1,3-phenylenebis(methylene))bis(2-thioxothiazolidin-4-ones) (3a,b) with suitably substituted aldehydes (4a-f) or 2-(1H-indol-3-yl)2-oxoacetaldehydes (8a-c) under microwave conditions. The bis(2-thioxothiazolidin-4-ones) were prepared from the corresponding primary alkyl amines (1a,b) and di-(carboxymethyl)-trithiocarbonyl (2). The 2-(1H-indol-3-yl)-2-oxoacetaldehydes (8a-c) were synthesized from the corresponding acid chlorides (7a-c) using HSnBu3.  相似文献   

3.
Mixtures of ethyl (E)- and (Z)-4-alkoxy-2-fluoro-3,4-diphenylbut-2-enoates (6-8) prepared from benzoin ethers and ethyl 2-(diethoxyphosphoryl)-2-fluoroacetate were transformed in high yields to the target 3-fluoro-4,5-diphenylfuran-2(5H)-one (14) using bromine in tetrachloromethane at room temperature. The non-cyclisable Z-isomers 6b-8b were gradually isomerised to the cyclisable E-isomers 6a-8a during the process. The reaction of the (E)-butenoates 6a-8a with boron trifluoride led to furanone 14, while in Z-isomers 6b-8b both alkoxy group and vinylic fluorine were substituted with bromine during the reaction. Mechanisms for both complex reactions have been proposed. Furanone 14 was transformed to 2-[tert-butyl(dimethyl)silyloxy]-3-fluoro-4,5-diphenylfuran (18) as a novel building block.  相似文献   

4.
Sodium dithionite initiated reactions of 1-bromo-1-chloro-2,2,2-trifluoroethane (1) with methyl and trimethylsilyl ethers of cyclopentanone and cyclohexanone enols (2a-d) in a MeCN/H2O system were investigated. 2-(2,2,2-Trifluoroethylidene)cyclopentanone (4a) and 2-(2,2,2-trifluoroethylidene)-cyclohexanone (4b), respectively, were obtained as the main products and isolated in reasonable yields. The reaction with a 1:1 mixture of 5- and 3-methyl substituted 1-methoxycyclohexenes, 2e and 2f, revealed strong influence of steric hindrance on the reaction rate; a mixture of 2-(2,2,2-trifluoroethylidene)-5-methylcyclohexanone (6) and 2-(2,2,2-trifluoroethylidene)-3-methylcyclohexanone (7) in a 9:1 ratio was formed. Ketones 4a and 4b were reduced to the corresponding alcohols 8 and 9 and the reaction of 4b with hydrazine gave an indazole derivative 10.  相似文献   

5.
New pyridine-phosphine chalcogenide ligands, tris[2-(2-pyridyl)ethyl]phosphine sulfide 1a and tris[2-(2-pyridyl)ethyl]phosphine selenide 1b, react with zinc(II) and cadmium(II) chlorides in EtOH at room temperature to afford complexes of compositions 2ZnCl2·2L (2, L = 1a) and 3CdCl2·2L (3a,b, L = 1a,b) in high yields. The solid-state structure of complexes 2, 3 has been proved by X-ray analysis data. Complex 2 is a centrosymmetric dimer, where two atoms of zinc are bonded by two bridging pyridine-phosphine sulfide ligands through N atoms. Complexes 3a,b exist as polymeric chains with each bridging ligand acting as a chelate N,S- or N,Se-donor to one cadmium(II) center and as a pyridine N-donor to the next cadmium(II) center.  相似文献   

6.
A series of 2-(1-isopropyl-2-benzimidazolyl)-6-(1-aryliminoethyl)pyridyl metal complexes [iron (II) (1a-6a), cobalt (II) (1b-6b) and nickel (II) (1c-6c)] were synthesized and fully characterized by elemental and spectroscopic analyses. Single-crystal X-ray diffraction analyses of five coordinated complexes 5a, 3b, 5b, 1c and 2c reveal 5a and 5b as distorted trigonal-bipyramidal geometry, and 3b, 1c and 2c as distorted square pyramidal geometry. All complexes performed ethylene reactivity with the assistance of various organoaluminums. The iron complexes displayed good activities in the presence of MAO and MMAO. Upon activated by Et2AlCl, the cobalt analogues showed moderate ethylene reactivity, while the nickel analogues exhibited relatively higher activities.  相似文献   

7.
Reactions of the title ethylene derivatives, (E)-1,2-di(3-guaiazulenyl)ethylene (1) and 2-(3-guaiazulenyl)-1,1-bis(4-methoxyphenyl)ethylene (2), with a 2 M amount of TCNE in benzene at 25 °C for 24 h under argon give new cycloaddition compounds, 1,1,2,2,11,11,12,12-octacyano-3-(3-guaiazulenyl)-8-isopropyl-5,10-dimethyl-1,2,3,6,9,10a-hexahydro-6,9-ethanobenz[a]azulene (3) from 1 and 1,1,2,2,11,11,12,12-octacyano-8-isopropyl-3,3-bis(4-methoxyphenyl)-5,10-dimethyl-1,2,3,6,9,10a-hexahydro-6,9-ethanobenz[a]-azulene (4) from 2, respectively, in 66 and 87% isolated yields. Comparative studies on the above reactions as well as the spectroscopic properties of the unique products 3 and 4, possessing interesting molecular structures, are reported and, further, a plausible reaction pathway for the formation of these products is described.  相似文献   

8.
The synthesis of versatile fluorine compounds for conducting polymer research on fluorinated materials is presented. 1,2,4,5-Tetrafluorobenzene was converted to 1,2,4,5-tetrafluorobenzaldehyde (1) and protected as an acetal. This gave the acetals 1,2,4,5-tetrafluoro-3-(1,3-dioxol-2-yl)benzene (2a) and 1,2,4,5-tetrafluoro-3-(5,5-dimethyl-1,3-dioxan-2-yl)benzene (2b). Compounds 2a and 2b were converted into the semiprotected 2,3,5,6-tetrafluoroterephthaldehydes: 1,2,4,5-tetrafluoro-3-(1,3-dioxol-2-yl)-6-formylbenzene (3a) and 1,2,4,5-tetrafluoro-3-(5,5-dimethyl-1,3-dioxan-2-yl)-6-formylbenzene (3b). While 3a was easily deprotected to give 2,3,5,6-tetrafluoroterephthaldehyde (4) compound 3b proved very resilient to hydrolysis and gave a 1:1 mixture of 4 and 1,2,4,5-tetrafluoro-3,6-bis(5,5-dimethyl-1,3-dioxan-2-yl)benzene (5). Compound 4 was reduced to 1,2,4,5-tetrafluoro-3,6-dihydroxymethylbenzene (6) and converted into 1,2,4,5-tetrafluoro-3,6-dibromomethylbenzene (7). Compound 7 was finally converted into 1,2,4,5-tetrafluoro-3,6-bis(diethylphosponylmethyl)benzene (8). Compounds 4 and 8 are versatile fluorinated molecules that can be used to replace their hydrogen counterparts in many molecules and materials. To illustrate this compounds 4 and 8 were oligomerised to give partially fluorinated polyphenylenevinylene (9).  相似文献   

9.
3-(6-Phenylimidazo[2,1-b]thiazol-5-yl)quinoxalin-2(1H)-ones (qunoxalinone) (6a-q) have been synthesized by the reaction of ethyl 2-oxo-2-(6-phenylimidazo[2,1-b]thiazol-5-yl)acetates (4a-e) with suitably substituted o-phenylenediamines (5a-f) under microwave heating. The ethyl 2-oxo-2-(6-phenylimidazo[2,1-b]thiazol-5-yl)acetates (4a-e) were prepared by the reaction of 6-phenylimidazo[2,1-b]thiazoles (3a-e) with ethyl chlorooxoacetate in refluxing 1,4-dioxane whereas the thiazoles (3a-e) were synthesized by the reaction of 2-bromo-1-phenylethanones (2a-e) with thiazol-2-amine in refluxing acetone.  相似文献   

10.
Vegar Stockmann  Per Bruheim 《Tetrahedron》2009,65(18):3668-16341
A new thermal ring cleavage of 3-pyridyl nitrenes for the formation of 4-isocyanobut-2-enenitrile products is reported. Thermolysis of 4-(thien-3-yl)-3-pyridyl azide 1 and 3-azido-4-(1-TIPS-1H-pyrrol-3-yl)pyridine 5 afforded two new isonitrile-nitrile products by ring cleavage; 4-isocyano-2-(thiophen-3-yl)but-2-enenitrile (3, 27%) and 4-isocyano-2-(1-TIPS-1H-pyrrol-3-yl)but-2-enenitrile (7, 20%), in addition to our previously reported pyrido[3,4-b]thienopyrrole (2, 29%) and pyrido[3,4-b]pyrrolo[3,2-d]pyrrole (6, 71%) products. Minor amounts of 2-(thien-3-yl)-1H-pyrrole-3-carbonitrile (4, 6%), formed by ring contraction, were also isolated after thermolysis of azide 1. Isonitriles 3 and 7 underwent degradation into amine 3b and formamide 7a by acidic hydrolysis. The nature and chemistry of compounds 3, 4 and 7 were investigated.  相似文献   

11.
Shin-ichi Naya 《Tetrahedron》2005,61(31):7384-7391
The synthesis and properties of 4,9-methanoundecafulvene [5-(4,9-methanocycloundeca-2′,4′,6′,8′,10′-pentaenylidene)pyrimidine-2,4,6(1,3,5H)-trione] derivatives 8a,b were studied. Their structural characteristics were investigated on the basis of the 1H and 13C NMR and UV-vis spectra. The rotational barrier (ΔG) around the exocyclic double bond of 8a was found to be 12.55 kcal mol−1 by the variable temperature 1H NMR measurement. The electrochemical properties of 8a,b were also studied by CV measurement. Furthermore, the transformation of 8a,b to 3-substituted 7,12-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1H,3H)-diones 16a,b was accomplished by oxidative cyclization using DDQ and subsequent ring-opening and ring-closure. The structural details and chemical properties of 16a,b were clarified. Reaction of 16a with deuteride afforded C13-adduct 19 as the single product, and thus, the methano-bridge controls the nucleophilic attack to prefer endo-selectivity. The photo-induced oxidation reaction of 16a and a vinylogous compound, 3-methylcyclohepta[4,5]furo[2,3-d]pyrimidine-2,4(3H)-dione 2a, toward some amines under aerobic conditions were carried out to give the corresponding imines (isolated by converting to the corresponding 2,4-dinitrophenylhydrazones) with the recycling number of 6.1-64.0 (for 16a) and 2.7-17.2 (for 2a), respectively.  相似文献   

12.
Although reaction of guaiazulene (1a) with 1,2-diphenyl-1,2-ethanediol (2a) in methanol in the presence of hydrochloric acid at 60 °C for 3 h under aerobic conditions gives no product, reaction of 1a with 1,2-bis(4-methoxyphenyl)-1,2-ethanediol (2b) under the same reaction conditions as 2a gives a new ethylene derivative, 2-(3-guaiazulenyl)-1,1-bis(4-methoxyphenyl)ethylene (3), in 97% yield. Similarly, reaction of methyl azulene-1-carboxylate (1b) with 2b under the same reaction conditions as 1a gives no product; however, reactions of 1-chloroazulene (1c) and the parent azulene (1d) with 2b under the same reaction conditions as 1a give 2-[3-(1-chloroazulenyl)]-1,1-bis(4-methoxyphenyl)ethylene (4) (81% yield) and 2-azulenyl-1,1-bis(4-methoxyphenyl)ethylene (5) (15% yield), respectively. Along with the above reactions, reactions of 1a with 1,2-bis(4-hydroxyphenyl)-1,2-ethanediol (2c) and 1-[4-(dimethylamino)phenyl]-2-phenyl-1,2-ethanediol (2d) under the same reaction conditions as 2b give 2-(3-guaiazulenyl)-1,1-bis(4-hydroxyphenyl)ethylene (6) (73% yield) and (Z)-2-[4-(dimethylamino)phenyl]-1-(3-guaiazulenyl)-1-phenylethylene (7) (17% yield), respectively. Comparative studies of the above reaction products and their yields, crystal structures, spectroscopic and electrochemical properties are reported and, further, a plausible reaction pathway for the formation of the products 3-7 is described.  相似文献   

13.
A new route to cyclophanes 6a,b incorporating 2,2′-bipyridine subunits has been elaborated using as the key steps (1) S-transalkylation of 6,6′-bis(methylsulfanyl)-2,2′-bipyridines 2a,b with ethyl bromoacetate resulting in the formation of 6,6′-bis[(ethoxycarbonyl)methylsulfanyl]-2,2′-bipyridines 3a,b and (2) ring-closing metathesis of the corresponding alkenyl ethers 5a,b.  相似文献   

14.
Lithium 1,2-bis(trimethylsilyl)hydrazine (1a) reacts with Me3SnCl, Et3SnBr and Bu3SnCl to form bis(trimethylsilyl)(trimethylstannyl)hydrazine (2a), (triethylstannyl)bis(trimethyl silyl)hydrazine (2b) and (tributylstannyl)bis(trimethylsilyl)hydrazine (2c), respectively. Compounds 2a and 2b undergo disproportionation at room temperature to form bis(trimethylsilyl)bis(trimethylstannyl)hydrazine (3a) and bis(triethylstannyl)bis(trimethylsilyl)hydrazine (3b). In contrast, 2c is highly stable and can withstand such a reaction up to 150 °C. The monostannylated products, 2a, 2b and 2c do not get lithiated at NH and instead undergo transmetallation in their reaction with RLi or Li to form lithiumbis(trimethylsilyl)hydrazine (1a).  相似文献   

15.
The efficient and simple routes for the synthesis of various ferrocenyl derivatives from ferrocenylcarbinols and N,N′-thiocarbonyldiimidazole (TCDI) are described. It involves grinding the two substrates in a Pyrex tube with a glass rod at room temperature. The reaction of ferrocenylmethanol (1a) provided S,S-bis(ferrocenylmethyl)dithiocarbonate (1b), whose crystal structure and a plausible mechanism for its formation are also reported. The reaction of 1-ferrocenyl-1-phenylmethanol (2a) and 1-ferrocenylbutanol (2b) gave the products 2c and 2d, respectively. The reaction of ω-ferrocenyl alcohols 4-ferrocenylphenol (3a) and 6-ferrocenylhexan-1-ol (3b) yielded the products 3c and 3d, respectively. Reaction of 1,1′-ferrocenedimethanol (3e) afforded 3f in moderate yield, and by contrast, it was not similar to 1b. Reaction of [4-(trifluoromethyl)phenyl]methanol (4a) provided the thiocarbonate 4b in good yield.  相似文献   

16.
Sensitized photocycloaddition reactions of 6,6′-dimethyl-4,4′-[1,3-bis(methylenoxy)phenylene]-di-2-pyrone (1) with electron-poor α,ω-diolefins such as ethylene diacrylate (2a) and polyoxyethylene dimethacrylates (2b-d) afforded site- and stereoselective macrocyclic dioxatetralactones (3a-d) and (4b) having 18- to 25-membered rings across the C5-C6 and C5′-C6′ double bonds, or C5-C6 and C3′-C4′ double bonds in 1, respectively. Similar photoreactions of 1 with electron-rich α,ω-diolefins such as poly(ethylene glycol)divinyl ether (2e and 2f) afforded crown ether-type macrocyclic compounds (5e and 5f) having 18- and 21-membered rings across the C3-C4 and C3′-C4′ double bonds in 1, respectively. The stereochemical features of 3b, 5e-xx, and 5e-nn were determined by the X-ray crystal analysis. The reaction mechanism was inferred by MO methods.  相似文献   

17.
Reaction of 3-methoxycarbonyl-2-methyl- or 3-dimethoxyphosphoryl-2-methyl-substituted 4-oxo-4H-chromones 1 with N-methylhydrazine resulted in the formation of isomeric, highly substituted pyrazoles 4 (major products) and 5 (minor products). Intramolecular transesterification of 4 and 5 under basic conditions led, respectively, to tricyclic derivatives 7 and 8. The structures of pyrazoles 4a (dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate) and 4b (methyl 4-oxo-2-methyl-4H-chromene-3-carboxylate) were confirmed by X-ray crystallography. Pyrazoles 4a and 4b were used as ligands (L) in the formation of ML2Cl2 complexes with platinum(II) or palladium(II) metal ions (M). Potassium tetrachloroplatinate(II), used as the metal ion reagent, gave both trans-[Pt(4a)2Cl2] and cis-[Pt(4a)2Cl2], complexes with ligand 4a, and only cis-[Pt(4b)2Cl2] isomer with ligand 4b. Palladium complexes were obtained by the reaction of bis(benzonitrile)dichloropalladium(II) with the test ligands. trans-[Pd(4a)2Cl2] and trans-[Pd(4b)2Cl2] were the exclusive products of these reactions. The structures of all the complexes were confirmed by IR, 1H NMR and FAB MS spectral analysis, elemental analysis and Kurnakov tests.  相似文献   

18.
[4+2] Cycloaddition reactions of 4-(phenylthio)-1-tosyl-2-pyridone (6a) and 4-(phenylsulfonyl)-1-tosyl-2-pyridone (6b) with electron-deficient dienophiles 7 (N-methylmaleimide, N-phenylmaleimide, and methyl acrylate) gave new isoquinuclidine products 8-10. The N-tosyl group of 6a and 6b was also efficiently converted to N-alkyl derivatives 6c-f, which showed different stereoselectivity toward reactions with dienophiles 7. Several other dienophiles 15 (dimethyl acetylenedicarboxylate, methyl vinyl ketone, ethyl vinyl ether, and methyl methacrylate) were found not to react with 6a or 6b, but led to the formation of tosyl migration products 4-(phenylthio)-O-tosyl-pyridinol (16a) and 4-(phenylsulfonyl)-O-tosyl-2-pyridinol (16b), respectively. The reactivity, regioselectivity, and stereoselectivity of the cycloaddition reactions were also compared with semi-empirical calculations.  相似文献   

19.
(Z)-5-(2-(1H-Indol-3-yl)-2-oxoethylidene)-3-phenyl-2-thioxothiazolidin-4-one (7a-q) derivatives have been synthesized by the condensation reaction of 3-phenyl-2-thioxothiazolidin-4-ones (3a-h) with suitably substituted 2-(1H-indol-3-yl)-2-oxoacetaldehyde (6a-d) under microwave condition. The thioxothiazolidine-4-ones were prepared from the corresponding aromatic amines (1a-e) and di-(carboxymethyl)-trithiocarbonyl (2). The aldehydes (6a-h) were synthesized from the corresponding acid chlorides (5a-d) using HSnBu3.  相似文献   

20.
Ramendra Pratap  Vishnu Ji Ram 《Tetrahedron》2007,63(41):10300-10308
A novel and efficient regioselective synthesis of various arylated highly congested 7-aryl-5-methylsulfanylindan-4-carbonitriles (3a-f), methyl 7-aryl-5-methylsulfanylindan-4-carboxylates (10a-e) and 7-aryl-5-methylsulfanylindan-4-carboxylic acids (11a-e) through base-catalyzed reaction of 6-aryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carbonitriles (1a-f) and methyl 6-aryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carboxylates (9a-e) by cyclopentanone (2) has been delineated. The synthetic potential of 2-pyranone was explored further to generate molecular diversity using 6-aryl-4-sec-amino-2-oxo-2H-pyran-3-carbonitriles (7a-h), 5,6-diaryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carbonitriles (5a,b) and methyl 5,6-diaryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carboxylates (12a,b) as precursors for the ring transformation by cyclopentanone to assess the effects of substituents on the course of the reaction to obtain highly congested indans, 6,7-diaryl-5-methylsulfanylindan-4-carbonitriles (6a,b), 7-aryl-5-(piperidin-1-yl)indan-4-carbonitriles (8a-h) and methyl 6,7-diaryl-5-methylsulfanylindan-4-carboxylates (13a,b).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号