首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In abstract Yang–Mills theory the standard instanton construction relies on the Hodge star having real eigenvalues which makes it inapplicable in the Lorentzian case. We show that for the affine connection an instanton-type construction can be carried out in the Lorentzian setting. The Lorentzian analogue of an instanton is a spacetime whose connection is metric compatible and Riemann curvature irreducible (pseudoinstanton). We suggest a metric-affine action which is a natural generalization of the Yang–Mills action and for which pseudoinstantons are stationary points. We show that a spacetime with a Ricci flat Levi-Civita connection is a pseudoinstanton, so the vacuum Einstein equation is a special case of our theory. We also find another pseudoinstanton which is a wave of torsion in Minkowski space. Analysis of the latter solution indicates the possibility of using it as a model for the neutrino.  相似文献   

2.
We presenttwo exact spherically symmetric vacuum solutions of gauge theories of gravity on a spacetime with non metric-compatible connection. One of them is defined on a Weyl-Cartan spacetime and the other on a general metric-affine space. We consider Lagrangians which include terms quadratic in the irreducible parts of the curvature, the torsion, and the nonmetricity. The metric part of both solutions is of the Reissner-Nordström type and includes a contribution of an effectivedilatation charge. A nontrivial Weyl 1-form is also common to both solutions. It resembles a Coulomb potential originating from thedilatation charge. The torsion is closely related to the nonmetricity.Supported by the Consejo Superior de Investigaciones Científicas, Serrano 123, E-28006 Madrid, Spain  相似文献   

3.
In this paper we deal with quadratic metric-affine gravity, which we briefly introduce, explain and give historical and physical reasons for using this particular theory of gravity. We then introduce a generalisation of well known spacetimes, namely pp-waves. A classical pp-wave is a 4-dimensional Lorentzian spacetime which admits a nonvanishing parallel spinor field; here the connection is assumed to be Levi-Civita. This definition was generalised in our previous work to metric compatible spacetimes with torsion and used to construct new explicit vacuum solutions of quadratic metric-affine gravity, namely generalised pp-waves of parallel Ricci curvature. The physical interpretation of these solutions we propose in this article is that they represent a conformally invariant metric-affine model for a massless elementary particle. We give a comparison with the classical model describing the interaction of gravitational and massless neutrino fields, namely Einstein–Weyl theory and construct pp-wave type solutions of this theory. We point out that generalised pp-waves of parallel Ricci curvature are very similar to pp-wave type solutions of the Einstein–Weyl model and therefore propose that our generalised pp-waves of parallel Ricci curvature represent a metric-affine model for the massless neutrino.  相似文献   

4.
Weyl geometry     
We develop the properties of Weyl geometry, beginning with a review of the conformal properties of Riemannian spacetimes. Decomposition of the Riemann curvature into trace and traceless parts allows an easy proof that the Weyl curvature tensor is the conformally invariant part of the Riemann curvature, and shows the explicit change in the Ricci and Schouten tensors required to insure conformal invariance. We include a proof of the well-known condition for the existence of a conformal transformation to a Ricci-flat spacetime. We generalize this to a derivation of the condition for the existence of a conformal transformation to a spacetime satisfying the Einstein equation with matter sources. Then, enlarging the symmetry from Poincaré to Weyl, we develop the Cartan structure equations of Weyl geometry, the form of the curvature tensor and its relationship to the Riemann curvature of the corresponding Riemannian geometry. We present a simple theory of Weyl-covariant gravity based on a curvature-linear action, and show that it is conformally equivalent to general relativity. This theory is invariant under local dilatations, but not the full conformal group.  相似文献   

5.
We discuss the concepts of Weyl and Riemann frames in the context of metric theories of gravity and state the fact that they are completely equivalent as far as geodesic motion is concerned. We apply this result to conformally flat spacetimes and show that a new picture arises when a Riemannian spacetime is taken by means of geometrical gauge transformations into a Minkowskian flat spacetime. We find out that in the Weyl frame gravity is described by a scalar field. We give some examples of how conformally flat spacetime configurations look when viewed from the standpoint of a Weyl frame. We show that in the non-relativistic and weak field regime the Weyl scalar field may be identified with the Newtonian gravitational potential. We suggest an equation for the scalar field by varying the Einstein-Hilbert action restricted to the class of conformally-flat spacetimes. We revisit Einstein and Fokker’s interpretation of Nordstr?m scalar gravity theory and draw an analogy between this approach and the Weyl gauge formalism. We briefly take a look at two-dimensional gravity as viewed in the Weyl frame and address the question of quantizing a conformally flat spacetime by going to the Weyl frame.  相似文献   

6.
We prove that the Einstein equations can be solved in a very general form for arbitrary spacetime dimensions and various types of vacuum and non-vacuum cases following a geometric method of anholonomic frame deformations for constructing exact solutions in gravity. The main idea of this method is to introduce on (pseudo) Riemannian manifolds an alternative (to the Levi-Civita connection) metric compatible linear connection which is also completely defined by the same metric structure. Such a canonically distinguished connection is with nontrivial torsion which is induced by some nonholonomy frame coefficients and generic off-diagonal terms of metrics. It is possible to define certain classes of adapted frames of reference when the Einstein equations for such an alternative connection transform into a system of partial differential equations which can be integrated in very general forms. Imposing nonholonomic constraints on generalized metrics and connections and adapted frames (selecting Levi-Civita configurations), we generate exact solutions in Einstein gravity and extra dimension generalizations.  相似文献   

7.
The Lie symmetries of the geodesic equations in a Riemannian space are computed in terms of the special projective group and its degenerates (affine vectors, homothetic vector and Killing vectors) of the metric. The Noether symmetries of the same equations are given in terms of the homothetic and the Killing vectors of the metric. It is shown that the geodesic equations in a Riemannian space admit three linear first integrals and two quadratic first integrals. We apply the results in the case of Einstein spaces, the Schwarzschild spacetime and the Friedman Robertson Walker spacetime. In each case the Lie and the Noether symmetries are computed explicitly together with the corresponding linear and quadratic first integrals.  相似文献   

8.
It is shown that there are no metric-compatible connections with zero torsion onproperly Finslerian, i.e. post-Riemannian, metrics. Since Finslerian connections exist on Riemannian metrics, the torsion rather than the metric becomes the object which determines whether the geometry is properly Finslerian or not. On the other hand, the solder forms and connection are determined by the torsion if the affine curvature is zero, the torsion then containing all the information about the geometric reality of spacetime. Since the metric curvature may still be Riemannian, the question arises of whether its present central role in spacetime physics is but a consequence of requiring that all the geometric content of spacetime be contained in the metric.  相似文献   

9.
We use the duality between the local Cartezian coordinates and the solutions of the Klein-Gordon equation to parametrize locally the spacetime in terms of wave functions and prepotentials. The components of metric, metric connection, curvature as well as the Einstein equation are given in this parametrization. We also discuss the local duality between coordinates and quantum fields and the metric in this later reparametrization.  相似文献   

10.
A study covering some aspects of the Einstein–Rosen metric is presented. The electric and magnetic parts of the Weyl tensor are calculated. It is shown that there are no purely magnetic E-R spacetimes, and also that a purely electric E-R spacetime is necessarily static. The geodesics equations are found and circular ones are analyzed in detail. The super-Poynting and the “Lagrangian” Poynting vectors are calculated and their expressions are found for two specific examples. It is shown that for a pulse-type solution, both expressions describe an inward radially directed flow of energy, far behind the wave front. The physical significance of such an effect is discussed.  相似文献   

11.
We provide physical interpretation for the four parameters of the stationary Lewis metric restricted to the Weyl class. Matching this spacetime to a completely anisotropic, rigidly rotating, fluid cylinder, we obtain from the junction conditions that one of these parameters is proportional to the vorticity of the source. From the Newtonian approximation a second parameter is found to be proportional to the energy per unit of length. The remaining two parameters may be associated to a gravitational analog of the Aharanov-Bohm effect. We prove, using the Cartan scalars, that the Weyl class metric and static Levi-Civita metric are locally equivalent, i.e., indistinguishable in terms of its curvature.  相似文献   

12.
We present the Dirac and Laplacian operators on Clifford bundles over space–time, associated to metric compatible linear connections of Cartan–Weyl, with trace-torsion, Q. In the case of nondegenerate metrics, we obtain a theory of generalized Brownian motions whose drift is the metric conjugate of Q. We give the constitutive equations for Q. We find that it contains Maxwell’s equations, characterized by two potentials, an harmonic one which has a zero field (Bohm-Aharonov potential) and a coexact term that generalizes the Hertz potential of Maxwell’s equations in Minkowski space.We develop the theory of the Hertz potential for a general Riemannian manifold. We study the invariant state for the theory, and determine the decomposition of Q in this state which has an invariant Born measure. In addition to the logarithmic potential derivative term, we have the previous Maxwellian potentials normalized by the invariant density. We characterize the time-evolution irreversibility of the Brownian motions generated by the Cartan–Weyl laplacians, in terms of these normalized Maxwell’s potentials. We prove the equivalence of the sourceless Maxwell equation on Minkowski space, and the Dirac-Hestenes equation for a Dirac-Hestenes spinor field written on Minkowski space provided with a Cartan–Weyl connection. If Q is characterized by the invariant state of the diffusion process generated on Euclidean space, then the Maxwell’s potentials appearing in Q can be seen alternatively as derived from the internal rotational degrees of freedom of the Dirac-Hestenes spinor field, yet the equivalence between Maxwell’s equation and Dirac-Hestenes equations is valid if we have that these potentials have only two components corresponding to the spin-plane. We present Lorentz-invariant diffusion representations for the Cartan–Weyl connections that sustain the equivalence of these equations, and furthermore, the diffusion of differential forms along these Brownian motions. We prove that the construction of the relativistic Brownian motion theory for the flat Minkowski metric, follows from the choices of the degenerate Clifford structure and the Oron and Horwitz relativistic Gaussian, instead of the Euclidean structure and the orthogonal invariant Gaussian. We further indicate the random Poincaré–Cartan invariants of phase-space provided with the canonical symplectic structure. We introduce the energy-form of the exact terms of Q and derive the relativistic quantum potential from the groundstate representation. We derive the field equations corresponding to these exact terms from an average on the invariant state Cartan scalar curvature, and find that the quantum potential can be identified with 1 / 12R(g), where R(g) is the metric scalar curvature. We establish a link between an anisotropic noise tensor and the genesis of a gravitational field in terms of the generalized Brownian motions. Thus, when we have a nontrivial curvature, we can identify the quantum nonlocal correlations with the gravitational field. We discuss the relations of this work with the heat kernel approach in quantum gravity. We finally present for the case of Q restricted to this exact term a supersymmetric system, in the classical sense due to E.Witten, and discuss the possible extensions to include the electromagnetic potential terms of Q  相似文献   

13.
The quantum theory of angular momentum affords a treatment of tensors and vectors in a spherical basis. By using this theory we define the tensor differential operators: divergence, curl and gradient which act on a tensor of any rank, in terms of C-G coefficients. With these definitions we obtain a matrix representation and useful properties for those operators. An interesting application of this formalism is to find the wave equation of a tensor of any rank in a linear theory. This provides a new common way to look at the wave equations associated with both Maxwell's equations and the Maxwell-like equations for the linearized Weyl curvature tensor in gravitoelectromagnetism describing gravitational radiation on a Minkowski spacetime background.  相似文献   

14.
We prove that some basic aspects of gravity commonly attributed to the modern connection-based approaches, can be reached naturally within the usual Riemannian geometry-based approach, by assuming the independence between the metric and the connection of the background manifold. These aspects are: 1) the BF-like field theory structure of the Einstein–Hilbert action, of the cosmological term, and of the corresponding equations of motion; 2) the formulation of Maxwellian field theories using only the Riemannian connection and its corresponding curvature tensor, and the subsequent unification of gravity and gauge interactions in a four dimensional field theory; 3) the construction of four and three dimensional geometrical invariants in terms of the Riemann tensor and its traces, particularly the formulation of an anomalous Chern–Simons topological model where the action of diffeomorphisms is identified with the action of a gauge symmetry, close to Witten’s formulation of three-dimensional gravity as a Chern–Simon gauge theory. 4) Tordions as propagating and non-propagating fields are also formulated in this approach. This new formulation collapses to the usual one when the metric connection is invoked, and certain geometrical structures very known in the traditional literature can be identified as remanent structures in this collapse.  相似文献   

15.
The stationary-Randers correspondence (SRC) provides a deep connection between the property of standard stationary spacetimes being globally hyperbolic, and the completeness of certain Finsler metrics of Randers type defined on the fibres. In order to establish further results, we investigate pointwise conformal transformations of certain Riemannian metrics on the fibres and growth conditions on the corresponding conformal factors. In general, a conformal transformation may map a complete Riemannian metric onto a complete or incomplete metric. We prove a theorem for the growth of the conformal factor such that the conformally transformed Riemannian metric is also complete. As an application, we establish novel relations between the completeness of Riemannian metrics, growth conditions on conformal factors and the Cauchy hypersurface condition on the fibres of a standard stationary spacetime. These results also imply new conditions for the completeness of Randers-type metrics by the application of the SRC.  相似文献   

16.
A solution of Einstein's vacuum field equations is constructed describing an imploding spherical impulsive gravitational wave followed by an exploding similar wave. The two waves propagate in Minkowskian spacetime and the history of the process is the past and future sheets of the null-cone of an event (taken as origin) in the spacetime. The solution is a superposition of two of Penrose's impulsive wave solutions and is described in a single coordinate system in which the metric tensor components are continuous across the histories of the wave fronts.  相似文献   

17.
We present a solution of the gravitational fieldequations which is similar in form to that given byWainwright. Several cases are considered, in particularwe find a general algebraic perfect fluid solution with equation of state p = whose Weyl tensor is of the purely magnetic type within a finiteregion of the spacetime. It is shown, for an observerwith four-velocity, umag say, that themetric's Weyl tensor is purely magnetic within the finiteregion while it is purely electric, as read by anotherobserver with four-velocity uele, elsewhere.Another observer, independent of the observers whomeasure the Weyl tensor to be purely electric ormagnetic, interprets the perfect fluid to have anequation of state p = . The Petrov type of themetric, in this case, is I(M) by theArianrhod-McIntosh classification and therefore there exists noconformally related metric which is vacuum. The vacuumseed metrics are derived for the perfect fluidsolutions.  相似文献   

18.
It has been observed on a number of occasions that complex transformations, of real solutions of the field equations to other real solutions, often preserve certain properties of the Weyl tensor. That is, the Petrov type and/or gravito-electromagnetic (GEM) properties of the Weyl tensor are preserved. In this context, we present an outstanding example of a complex windmill transformation of a static (non-physical) anisotropic fluid spacetime of Petrov type $I(M^+)$ that maps to a purely magnetic (PM) spacetime of Petrov type $I(M^{\infty })$ . The PM spacetime is analyzed and compared to the Arianrhod–Lun–McIntosh–Perjés spacetime. It is shown that these spacetimes, although similar in some aspects, are distinct solutions. The main distinction is that the generated PM spacetime satisfies all the standard energy-conditions. This intriguing but purely mathematical scenario may have implications in the area of GEM duality.  相似文献   

19.
《Nuclear Physics B》2001,609(3):429-441
We describe in superspace a classical theory of of two-dimensional (1,1) dilaton supergravity coupled to a super-Liouville field, and find exact super black hole solutions to the field equations that have non-constant curvature. We consider the possibility that a gravitini condensate forms and look at the implications for the resultant spacetime structure. We find that all such condensate solutions have a condensate and/or naked curvature singularity.  相似文献   

20.
In General Relativity, one has several traditional ways of interpreting the curvature of spacetime, expressed either through the curvature tensor or the sectional curvature function. This essay asks what happens if curvature is treated on a more primitive level, that is, if the curvature is prescribed, what information does one have about the metric and associated connection of space-time? It turns out that a surprising amount of information is available, not only about the metric and connection, but also, through Einstein's equations, about the algebraic structure of the energy-momentum tensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号