首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Cd atom in Cd(Hmmi)2I2 is five‐coordinate with a trigonal bipyramidal geometry in which the apical sites are occupied by I and O atoms. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The title compound, [Cd(NO3)2(C9H12N4)2]n, has a one‐dimensional double‐bridged chain polymer structure with a 16‐membered macrometallacyclic tetragonal structural motif. The CdII ion occupies a crystallographic inversion centre and is coordinated by four equatorial N atoms from four distinct bis(2‐methylimidazol‐1‐yl)methane ligands and two apical nitrate O atoms to form a slightly distorted octahedral coordination geometry.  相似文献   

3.
The structure of Cd(phen)(indole‐3‐acetato)2 has twofold symmetry and features a six‐coordinated distorted octahedral geometry around cadmium(II), defined by an N2O4 donor set, with Cd–O distances ranging from 2.214(3) to 2.526(3) Å. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
The title compound, [Cd(C4H4O4)(C7H6N2)2(H2O)]n, is a three‐dimensional polymeric complex. The CdII atom is located on an inversion centre and assumes an elongated octahedral coordination geometry, with a long Cd—O distance of 2.5381 (5) Å to the coordinated bridging water molecule. The succinate dianion, located on another inversion centre, bridges adjacent Cd atoms to form succinate‐bridged polymeric chains. The coordinated water mol­ecule is located on a twofold axis and links adjacent succinate‐bridged chains to form a water‐bridged polymeric chain.  相似文献   

5.
In the title complex, mer‐diaqua[2,6‐dioxo‐1,2,3,6‐tetrahydropyrimidine‐4‐carboxylato(2−)]bis(1H‐imidazole‐κN3)cobalt(II), [Co(C5H2N2O4)(C3H4N2)2(H2O)2], the CoII ion is coordinated by a deprotonated N atom and the carboxylate O atom of the orotate ligand, two imidazole N atoms and two aqua ligands in a distorted octahedral geometry. The title complex exists as discrete doubly hydrogen‐bonded dimers, and a three‐dimensional network of O—H...O and N—H...O hydrogen bonds and weak π–π interactions is responsible for crystal stabilization.  相似文献   

6.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

7.
A new cadmium coordination polymer, [Cd(C5H2N2O4)(H2O)2]n, possesses a one‐dimensional zigzag chain structure built from CdII centers bridged sequentially by pairs of O and N atoms of the 5‐carboxyimidazole‐4‐carboxylate ligand. The CdII center is in a distorted octahedral geometry, being coordinated by two O atoms from two coordinated water mol­ecules [Cd—O = 2.322 (7) and 2.364 (7) Å], and by two N atoms [Cd—N = 2.222 (6) and 2.232 (6) Å] and two carboxyl O atoms [Cd—O = 2.383 (6) and 2.414 (6) Å] from two 5‐carboxyimidazole‐4‐carboxylate ligands.  相似文献   

8.
The title binuclear complex, [CuFe(CN)5(C8H21N5O2)(NO)]·2H2O or [CuFe(nelin)(CN)5(NO)]·2H2O (nelin is 5‐methyl‐5‐nitro‐3,7‐di­aza­nonane‐1,9‐di­amine) consists of discrete binuclear mixed‐metal species, with a Cu centre linked to an Fe centre through a cyano bridge, and two water mol­ecules of crystallization. In the complex, the CuII ion is coordinated by five N atoms and has a distorted square‐pyramidal geometry. The FeII centre is in a distorted octahedral environment.  相似文献   

9.
In the title neutral coordination polymer, [Cd(C6H3ClNO2)2(H2O)2]n, each CdII ion is coordinated by one N and four O atoms from three 2‐chloro­nicotinate ligands and by two aqua ligands, defining a distorted monocapped octahedral coordination geometry. Adjacent Cd atoms are linked by the pyridyl N atom and the bidentate carboxyl­ate functional group of a 2‐­chloro­nicotinate ligand, forming a one‐dimensional infinite chain along the b axis. The Cd⋯Cd distance is 8.112 (3) Å. These chains are linked by O—H⋯O and O—H⋯N hydrogen bonds into a three‐dimensional network structure.  相似文献   

10.
Imidazole‐4,5‐dicarboxylic acid (H3IDC) and its derivatives are widely used in the preparation of new coordination polymers owing to their versatile bridging coordination modes and potential hydrogen‐bonding donors and acceptors. A new one‐dimensional coordination polymer, namely catena‐poly[[diaquacadmium(II)]‐μ3‐2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylato)], [Cd(C16H6N4O8)0.5(H2O)2]n or [Cd(H2Phbidc)1/2(H2O)2]n, has been synthesized by the reaction of Cd(OAc)2·2H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, one type of Cd ion (Cd1) is six‐coordinated by two N atoms and two O atoms from one H2Phbidc4− ligand and by two O atoms from two water molecules, forming a significantly distorted octahedral CdN2O4 coordination geometry. In contrast, the other type of Cd ion (Cd2) is six‐coordinated by two N atoms and two O atoms from two symmetry‐related H2Phbidc4− ligands and by two O atoms from two symmetry‐related water molecules, leading to a more regular octahedral coordination geometry. The Cd1 and Cd2 ions are linked by H2Phbidc4− ligands into a one‐dimensional chain which runs parallel to the b axis. In the crystal, the one‐dimensional chains are connected through hydrogen bonds, generating a two‐dimensional layered structure parallel to the ab plane. Adjacent layers are further linked by hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

11.
The title compound, {[Cd2(C10H12N2O8)(H2O)]·H2O}n, consists of two crystallographically independent CdII cations, one ethylenediaminetetraacetate (edta) tetraanion, one coordinated water molecule and one solvent water molecule. The coordination of one of the Cd atoms, Cd1, is composed of five O atoms and two N atoms from two tetraanionic edta ligands in a distorted pentagonal–bipyramidal coordination geometry. The other Cd atom, Cd2, is six‐coordinated by five carboxylate O atoms from five edta ligands and one water molecule in a distorted octahedral geometry. Two neighbouring Cd1 atoms are bridged by a pair of carboxylate O atoms to form a centrosymmetric [Cd2(edta)2]4− unit located on the inversion centre, which is further extended into a two‐dimensional layered structure through Cd2—O bonds. There are hydrogen bonds between the coordinated water molecules and carboxylate O atoms within the layer. The solvent water molecules occupy the space between the layers and interact with the host layers through O—H...O and C—H...O interactions.  相似文献   

12.
A series of Zn (II), Pd (II) and Cd (II) complexes, [(L) n MX 2 ] m (L = L‐a–L‐c; M = Zn, Pd; X = Cl; M = Cd; X = Br; n, m = 1 or 2), containing 4‐methoxy‐N‐(pyridin‐2‐ylmethylene) aniline ( L‐a ), 4‐methoxy‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐b ) and 4‐methoxy‐N‐methyl‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐c ) have been synthesized and characterized. The X‐ray crystal structures of Pd (II) complexes [L 1 PdCl 2 ] (L = L‐b and L‐c) revealed distorted square planar geometries obtained via coordinative interaction of the nitrogen atoms of pyridine and amine moieties and two chloro ligands. The geometry around Zn (II) center in [(L‐a)ZnCl 2 ] and [(L‐c)ZnCl 2 ] can be best described as distorted tetrahedral, whereas [(L‐b) 2 ZnCl 2 ] and [(L‐b) 2 CdBr 2 ] achieved 6‐coordinated octahedral geometries around Zn and Cd centers through 2‐equivalent ligands, respectively. In addition, a dimeric [(L‐c)Cd(μ ‐ Br)Br] 2 complex exhibited typical 5‐coordinated trigonal bipyramidal geometry around Cd center. The polymerization of methyl methacrylate in the presence of modified methylaluminoxane was evaluated by all the synthesized complexes at 60°C. Among these complexes, [(L‐b)PdCl 2 ] showed the highest catalytic activity [3.80 × 104 g poly (methyl methacrylate) (PMMA)/mol Pd hr?1], yielding high molecular weight (9.12 × 105 g mol?1) PMMA. Syndio‐enriched PMMA (characterized using 1H‐NMR spectroscopy) of about 0.68 was obtained with Tg in the range 120–128°C. Unlike imine and amine moieties, the introduction of N‐methyl moiety has an adverse effect on the catalytic activity, but the syndiotacticity remained unaffected.  相似文献   

13.
The cadmium atom is coordinated in distorted pentagonal bipyramidal geometry by the pyridine‐nitrogen atom of the 4‐[N,N‐bis(2‐cyanoethyl)amino]pyridine ligand, two oxygen atoms of two methanol molecules and four oxygen atoms of two acetate groups. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In the title compound, [Mn(C5H3N2O4)2(H2O)2], the MnII atom lies on an inversion centre, is trans‐coordinated by two N,O‐bidentate 1H‐imidazole‐4,5‐di­carboxyl­ate monoanionic ligands [Mn—O = 2.202 (3) Å and Mn—N = 2.201 (4) Å] and two water mol­ecules [Mn—O = 2.197 (4) Å], and exhibits a distorted octahedral geometry, with adjacent cis angles of 76.45 (13), 86.09 (13) and 89.20 (13)°. The complete solid‐state structure can be described as a three‐dimensional supramol­ecular framework, stabilized by extensive hydrogen‐bonding interactions involving the coordinated water mol­ecules, the carboxy O atoms and the protonated imidazole N atoms of the imidazole‐4,5‐di­carboxyl­ate ligands.  相似文献   

15.
The title complex, [CdNi(CN)4(C6H7N)2]n, adopts a slightly distorted octahedral geometry around the Cd centre. Four cyanide N atoms occupy the equatorial coordination sites around the Cd centre. The structure consists of corrugated and cyanide‐bridged polymeric networks made up of tetracyano­nickelate ions coordinated to cadmium, with the Ni ion coordinated by four cyanide ligands in a square‐planar arrangement. The Cd and Ni atoms occupy special positions of 2/m site symmetry. The 3‐methyl­pyridine group, except for two methyl H atoms, lies on a crystallographic mirror plane. The 3‐methyl­pyridine molecules, bound to cadmium in trans positions, are located on both sides of the network. The bonding in the networks occurs because of a departure of the Ni—C—N—Cd sequence of atoms from linearity at the C and N atoms.  相似文献   

16.
The crystal structure of the title complex, [Cd(C20H25­N2­O2)­Cl], reveals a hydrogen‐bonded dimer composed of neutral molecules. The CdII center is five‐coordinated by two O atoms of the pendant arms, two nitro­gen donors of the 1,5‐di­aza­cyclo­octane ring and a chloride anion. The coordination geometry of the complex could be described as a distorted square pyramid. The 1,5‐di­aza­cyclo­octane backbone adopts a boat/chair configuration and the two phenol/phenolato groups have a dihedral angle of 101.3 (2)° between them. The coordinated phenolate and phenolic groups of inversion‐related mol­ecules form strong intermolecular O—H?O hydrogen bonds.  相似文献   

17.
The title two‐dimensional hydrogen‐bonded coordination compounds, [Cu(C8H5O4)2(C4H6N2)2], (I), and [Cu(C8H7O2)2(C4H6N2)2]·H2O, (II), have been synthesized and structurally characterized. The molecule of complex (I) lies across an inversion centre, and the Cu2+ ion is coordinated by two N atoms from two 4‐methyl‐1H‐imidazole (4‐MeIM) molecules and two O atoms from two 3‐carboxybenzoate (HBDC) anions in a square‐planar geometry. Adjacent molecules are linked through intermolecular N—H...O and O—H...O hydrogen bonds into a two‐dimensional sheet with (4,4) topology. In the asymmetric part of the unit cell of (II) there are two symmetry‐independent molecules, in which each Cu2+ ion is also coordinated by two N atoms from two 4‐MeIM molecules and two O atoms from two 3‐methylbenzoate (3‐MeBC) anions in a square‐planar coordination. Two neutral complex molecules are held together via N—H...O(carboxylate) hydrogen bonds to generate a dimeric pair, which is further linked via discrete water molecules into a two‐dimensional network with the Schläfli symbol (43)2(46,66,83). In both compounds, as well as the strong intermolecular hydrogen bonds, π–π interactions also stabilize the crystal stacking.  相似文献   

18.
In the title complex, {[Cd(C5H6O4)(H2O)2]·4H2O}n, the dimethylmalonate–cadmium metal–organic framework co‐exists with an extended structure of water molecules, which resembles a sodalite‐type framework. In the asymmetric unit, there are five independent solvent water molecules, two of which are in special positions. The Cd atoms are eight‐coordinated in a distorted square‐antiprismatic geometry by six O atoms of three different dimethylmalonate groups and by two water molecules, and form a two‐dimensional honeycomb layer parallel to the bc plane. Two such layers sandwich the hydrogen‐bonded water layer, which has a sodalite‐type structure with truncated sodalite units composed of coordinated and solvent water molecules. This work is the first example of a dimethylmalonate cadmium complex containing truncated sodalite‐type water clusters.  相似文献   

19.
In the title mixed‐ligand metal–organic polymeric complex [Cd(C14H8O6S)(C16H16N2)(H2O)]n, the asymmetric unit contains a crystallographically unique CdII atom, one doubly deprotonated 4,4′‐sulfonyldibenzoic acid ligand (H2SDBA), one 3,4,7,8‐tetramethyl‐1,10‐phenanthroline (TMPHEN) molecule and one water molecule. Each CdII centre is coordinated by two N atoms from the chelating TMPHEN ligand, three O atoms from monodentate carboxylate groups of three different SDBA2− ligands and one O atom from a coordinated water molecule, giving a distorted CdN2O4 octahedral geometry. Single‐crystal X‐ray diffraction analysis reveals that the compound is a one‐dimensional double‐chain polymer containing 28‐membered rings based on Cd2O2 clusters, with a Cd...Cd separation of 3.6889 (4) Å. These chains are linked by O—H...O and C—H...O hydrogen bonds to form a three‐dimensional supramolecular framework. The framework is reinforced by π–π and C—O...π interactions.  相似文献   

20.
The title compound, [CoCl2(C15H12N2)2]·0.5CH2Cl2, was crystallized from a binary mixture of dichloromethane and hexane and a dimeric supramolecular structure was isolated. The CoII centre exhibits a distorted tetrahedral geometry, with two independent pyrazole‐based ligands occupying two coordination sites and two chloride ligands occupying the third and fourth coordination sites. The supramolecular structure is supported by complementary hydrogen bonding between the pyrazole NH group and the chloride ligand of an adjacent molecule. This hydrogen‐bonding motif yields a ten‐membered hydrogen‐bonded ring. Density functional theory (DFT) simulations at the PBE/6‐311G level of theory were used to probe the solid‐state structure. These simulations suggest that the chelate undergoes a degree of conformational distortion from the lowest‐energy geometry to allow for optimal hydrogen bonding in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号