首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
A laccase has been purified from the liquid culture growth medium containing bagasse particles of Fomes durissimus. The method involved concentration of the culture filtrate by ultrafiltration and anion exchange chromatography on diethyl aminoethyl cellulose. The sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis both gave single protein band indicating that the enzyme preparation was pure. The molecular mass of the purified laccase determined from SDS-PAGE analysis was 75 kDa. Using 2,6-dimethoxyphenol as the substrate, the determined K m and k cat values of the laccase are 182 μM and 0.35 s−1, respectively, giving a k cat/K m value of 1.92 × 103 M−1 s−1. The pH and temperature optimum were 4.0 and 35 °C, respectively. The purified laccase has yellow colour and does not show absorption band around 610 nm found in blue laccases. Moreover, it transformed methylbenzene to benzaldehyde in the absence of mediator molecules, property exhibited by yellow laccases.  相似文献   

2.
The culture conditions for maximum secretion of laccase by Loweporus lividus MTCC-1178 have been optimized. The laccase from the culture filtrate of L. lividus MTCC-1178 has been purified to homogeneity. The molecular weight of the purified laccase is 64.8 kDa. The enzymatic characteristics like K m, pH, and temperature optimum using 2,6-dimethoxyphenol have been determined and found to be 480 μM, 5.0, and 60 °C, respectively. The K m values for other substrates like catechol, m-cresol, pyrogallol, and syringaldazine have also been determined and found to be 230, 210, 320, and 350 μM, respectively.  相似文献   

3.
A white rot basidiomycete Polyporus brumalis has been reported to induce two laccase genes under degradation conditions of dibutylphthalate. When this fungus was grown in a minimal medium, one laccase enzyme was detected by the native polyacrylamide gel electrophoresis. A laccase was purified through ammonium sulfate precipitation and ion exchange chromatography, and the estimated molecular weight was 70 kDa. The optimum pH and temperature of the purified laccase was pH 4.0 and 20 °C, respectively. The K m value of the enzyme was 685.0 μM, and the V max was 0.147 ODmin−1 unit−1 for o-tolidine. Purified laccase showed effective decolorization of a dye, Remazol Brilliant Blue R (RBBR), without any laccase mediator. However, this effect was reduced by a laccase inhibitor, kojic acid, which confirmed that the laccase was directly involved in the decolorization of RBBR.  相似文献   

4.
Phenylalanine dehydrogenase (l-PheDH) from Sporosarcina ureae was immobilized on DEAE-cellulose, modified initially with 2-amino-4,6-dichloro-s-triazine followed by hexamethylenediamine and glutaraldehyde. The highest activity of immobilized PheDH was determined as 95.75 U/g support with 56% retained activity. The optimum pH value of immobilized l-PheDH was shifted from pH 10.4 to 11.0. The immobilized l-PheDH showed activity variations close to the maximum value in a wider temperature range of 45–55 °C, whereas it was 40 °C for the native enzyme. The pH and the thermal stability of the immobilized l-PheDH were also better than the native enzyme. At pH 10.4 and 25 °C, K m values of the native and the immobilized l-PheDH were determined as K m Phe = 0.118, 0.063 mM and K m NAD+ = 0.234, 0.128 mM, respectively. Formed NADH at the exit of packed bed reactor column was detected by the flow-injection analysis system. The conversion efficiency of the reactor was found to be 100% in the range of 5–600 μM Phe at 9 mM NAD+ with a total flow rate of 0.1 mL/min. The reactor was used for the analyses of 30 samples each for 3 h per day. The half-life period of the reactor was 15 days.  相似文献   

5.
A 66-kDa thermostable family 1 Glycosyl Hydrolase (GH1) enzyme with β-glucosidase and β-galactosidase activities was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family. N-terminal and partial internal amino acid sequences showed significant resemblance to plant GH1 enzymes. Kinetic studies showed that enzyme hydrolyzed p-nitrophenyl β-d-glucopyranoside (pNP-Glc) with higher efficiency (K cat/K m = 2.27 × 104 M−1 s−1) as compared to p-nitrophenyl β-d-galactopyranoside (pNP-Gal; K cat/K m = 1.15 × 104 M−1 s−1). The optimum pH for β-galactosidase activity was 4.8 and 4.4 in citrate phosphate and acetate buffers respectively, while for β-glucosidase it was 4.6 in both buffers. The activation energy was found to be 10.6 kcal/mol in the temperature range 30–65 °C. The enzyme showed maximum activity at 65 °C with half life of ~40 min and first-order rate constant of 0.0172 min−1. Far-UV CD spectra of enzyme exhibited α, β pattern at room temperature at pH 8.0. This thermostable enzyme with dual specificity and higher catalytic efficiency can be utilized for different commercial applications.  相似文献   

6.
Uridine diphosphogalactose-4-epimerase (UDP-galactose-4-epimerase, GalE, EC 5.1.3.2) mediates the 4-epimerization of nucleic acid-activated galactose into UDP-glucose. To date, no enzyme is known to mediate 4-epimerization of free monosaccharide substrates. To determine the potential activity of GalE for free monosaccharide, Escherichia coli GalE was expressed and purified using Ni-affinity chromatography, and its ability to mediate 4-epimerization of a variety of free keto- and aldohexoses was assessed. Purified GalE was found to possess 4-epimerization activity for free galactose, glucose, fructose, tagatose, psicose, and sorbose at 0.47, 0.31, 2.82, 9.67, 15.44, and 2.08 nmol/mg protein per minute, respectively. No 4-epimerization activity was found for allose, gulose, altrose, idose, mannose, and talose. The kinetic parameters of 4-epimerization reactions were K m = 26.4 mM and k cat = 0.0155 min−1 for d-galactose and K m = 237 mM and k cat = 0.327 min−1 for d-tagatose. The 4-epimerization of tagatose, a reaction of commercial interest, was enhanced twofold (19.79 nmol/mg protein per minute) when asparagine was exchanged with serine at position 179. The novel activity of GalE for free monosaccharide may be beneficial for the production of rare sugars using cheap natural resources. Potential strategies for developing enhanced GalE with increased 4-epimerization activity are discussed in the context of the above findings and an analysis of a 3D structural model.  相似文献   

7.
Phenoloxidase (PO) is a key enzyme in insect development, responsible for catalyzing the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the kinetic assay in air-saturated solutions and the kinetic behavior of PO from Pieris rapae (Lepidoptera) larvae in the oxidation of l-tyrosine (a monophenol) and l-DOPA (l-3, 4-dihydroxyphenylalanine) (a diphenol) was studied. The inhibitory effects of 3-hydroxy-4-methoxybenzaldehyde thiosemicarbazone (3-H-4-MBT) on the monophenolase and diphenolase activities of PO were also studied. The results show that 3-H-4-MBT can inhibit both the monophenolase and diphenolase activities of PO. The lag period of l-tyrosine oxidation catalyzed by the enzyme was obviously lengthened and the steady-state activities of the enzyme sharply decreased. The inhibitor was found to be noncompetitively reversible with a K I (K I = K IS) of 0.30 μmol/L and an estimated IC50 of 0.14 ± 0.02 μmol/L for monophenolase and 0.26 ± 0.04 μmol/L for diphenolase. In the time course of the oxidation of l-DOPA catalyzed by the enzyme in the presence of different concentrations of 3-H-4-MBT, the rate decreased with increasing time until a straight line was approached. The microscopic rate constants for the reaction of 3-H-4-MBT with the enzyme were determined.  相似文献   

8.
A synthetic polymer, polyvinyl alcohol (PVA), a cheap and nontoxic synthetic polymer to organism, has been ascribed for biocatalyst immobilization. In this work PVA–alginate beads were developed with thermal, mechanical, and chemical stability to high temperatures (<80 °C). The combination of alginate and bead treatment with sodium sulfate not only prevented agglomeration but produced beads of high gel strength and conferred enzyme protection from inactivation by boric acid. Naringinase from Penicillium decumbens was immobilized in PVA (10%)–alginate beads with three different sizes (1–3 mm), at three different alginate concentrations (0.2–1.0%), and these features were investigated in terms of swelling ratio within the beads, enzyme activity, and immobilization yield during hydrolysis of naringin. The pH and temperature optimum were 4.0 and 70 °C for the PVA–alginate-immobilized naringinase. The highest naringinase activity yield in PVA (10%)–alginate (1%) beads of 2 mm was 80%, at pH 4.0 and 70 °C. The Michaelis constant (K Mapp) and the maximum reaction velocity (V maxapp) were evaluated for both free (K Mapp = 0.233 mM; V maxapp = 0.13 mM min−1) and immobilized naringinase (K Mapp = 0.349 mM; V maxapp = 0.08 mM min−1). The residual activity of the immobilized enzyme was followed in eight consecutive batch runs with a retention activity of 70%. After 6 weeks, upon storage in acetate buffer pH 4 at 4 °C, the immobilized biocatalyst retained 90% of the initial activity. These promising results are illustrative of the potential of this immobilization strategy for the system evaluated and suggest that its application may be effectively performed for the entrapment of other biocatalysts.  相似文献   

9.
A heparinase-producing fungus was isolated, and the strain was taxonomically characterized as Aspergillus flavus by morphophysiological and 26S rRNA gene homology studies. The culture produced intracellular heparinase enzyme, which was purified 40.5-fold by DEAE-Sephadex A-50, CM-Sephadex C-50, and Sephadex G-100 column chromatography. Specific activity of the purified enzyme was found to be 44.6 IU/μg protein and the molecular weight of native as well as reduced heparinase was 24 kDa, showing a monomeric unit structure. Peptide mass spectrum showed poor homogeneity with the database in the peptide bank. The enzyme activity was maximum at 30 °C in the presence of 300 mM NaCl at pH 7.0. In the presence of Co2+, Mn2+ ions, and reducing agents (β-mercaptoethanol, dithiothreitol), enzyme activity was enhanced and inhibited by iodoacetic acid. These observations suggested that free sulfohydryl groups of cysteine residues were necessary for catalytic activity of the enzyme. The enzyme was also inhibited by histidine modifier, DEPC, which suggests that along with cysteine, histidine may be present at its active site. The enzyme showed a high affinity for heparin as a substrate with K m and V max as 2.2 × 10−5 M and 30.8 mM min−1, respectively. The affinity of the enzyme for different glycosaminoglycans studied varied, with high substrate specificity toward heparin and heparin-derived polysaccharides. Depolymerization of heparin and fractionation of the oligosaccharides yielded heparin disaccharides as main product.  相似文献   

10.
Superoxide dismutase (SOD, EC 1.15.1.1) is a metalloenzyme or antioxidant enzyme that catalyzes the disproportionation of the harmful superoxide anionic radical to hydrogen peroxide and molecular oxygen. Due to its antioxidative effects, SOD has long been applied in medicinal treatment, cosmetic, and other chemical industries. Fifteen Zingiberaceae plants were tested for SOD activity in their rhizome extracts. The crude homogenate and ammonium sulfate cut fraction of Curcuma aeruginosa were found to contain a significant level of SOD activity. The SOD enzyme was enriched 16.7-fold by sequential ammonium sulfate precipitation, diethylaminoethyl cellulose ion exchange, and Superdex 75 gel filtration column chromatography. An overall SOD yield of 2.51 % with a specific activity of 812.20 U/mg was obtained. The enriched SOD had an apparent MW of 31.5 kDa, as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis, and a pH and temperature optima of 4.0 and 50 °C. With nitroblue tetrazolium and riboflavin as substrates, the K m values were 57.31 ± 0.012 and 1.51 ± 0.014 M, respectively, with corresponding V max values of 333.7 ± 0.034 and 254.1 ± 0.022 μmol min−1 mg protein−1. This SOD likely belongs to the Fe- or Mn-SOD category due to the fact that it was insensitive to potassium cyanide or hydrogen peroxide inhibition, but was potentially weakly stimulated by hydrogen peroxide, and stimulated by Mn2+and Fe2+ ions. Moreover, this purified SOD also exhibited inhibitory effects on lipopolysaccharide-induced nitric oxide production in cultured mouse macrophage cell RAW 264.7 in a dose-dependent manner (IC50 = 14.36 ± 0.15 μg protein/ml).  相似文献   

11.
A putative α-amylase gene, designated as RoAmy, was cloned from Rhizopus oryzae. The deduced amino acid sequence showed the highest (42.8%) similarity to the α-amylase from Trichoderma viride. The RoAmy gene was successfully expressed in Pichia pastoris GS115 under the induction of methanol. The molecular weight of the purified RoAmy determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis was approximately 48 kDa. The optimal pH and temperature were 4–6 and 60 °C, respectively. The enzyme was stable at pH ranges of 4.5–6.5 and temperatures below 50 °C. Purified RoAmy had a K m and V max of 0.27 mg/ml and 0.068 mg/min, respectively, with a specific activity of 1,123 U/mg on soluble starch. Amylase activity was strongly inhibited by 5 mM Cu2+ and 5 mM Fe2+, whereas 5 mM Ca2+ showed no significant effect. The RoAmy hydrolytic activity was the highest on wheat starch but showed only 55% activity on amylopectin relative to soluble corn starch, while the pullulanase activity was negligible. The main end products of the polysaccharides tested were glucose and maltose. Maltose reached a concentration of 74% (w/w) with potato starch as the substrate. The enzyme had an extremely high affinity (K m = 0.22 mM) to maltotriose. A high ratio of glucose/maltose of 1:4 was obtained when maltotriose was used at an initial concentration of 40 mM.  相似文献   

12.
Purification and characterization of halotolerant, thermostable alkaline l-glutaminase from a Bacillus sp. LKG-01 (MTCC 10401), isolated from Gangotri region of Uttarakhand Himalaya, is being reported in this paper. Enzyme has been purified 49-fold from cell-free extract with 25% recovery (specific activity 584.2 U/mg protein) by (NH4)2SO4 precipitation followed by anion exchange chromatography and gel filtration. Enzyme has a molecular weight of 66 kDa. l-Glutaminase is most active at pH 11.0 and stable in the pH range 8.0–11.0. Temperature optimum is 70 °C and is completely stable after 3 h pre-incubation at 50 °C. Enzyme reflects more enhanced activity with 1–20% (w/v) NaCl, which is further reduced to 80% when NaCl concentration was increased up to 25%. l-Glutaminase is almost active with K+, Zn2+, and Ni2+ ions and K m and V max values of 240 μM and 277.77 ± 1.1 U/mg proteins, respectively. Higher specific activity, purification fold, better halo-tolerance, and thermostability would make this enzyme more attractive for food fermentation with respect to other soil microbe derived l-glutaminase reported so far.  相似文献   

13.
Chitinase was purified from the culture medium of Bacillus licheniformis SK-1 by colloidal chitin affinity adsorption followed by diethylamino ethanol-cellulose column chromatography. The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of chitinase 72 (Chi72) were 72 kDa and 4.62 (Chi72) kDa, respectively. The purified chitinase revealed two activity optima at pH 6 and 8 when colloidal chitin was used as substrate. The enzyme exhibited activity in broad temperature range, from 40 to 70°C, with optimum at 55°C. It was stable for 2 h at temperatures below 60°C and stable over a broad pH range of 4.0–9.0 for 24 h. The apparent K m and V max of Chi72 for colloidal chitin were 0.23 mg ml−1 and 7.03 U/mg, respectively. The chitinase activity was high on colloidal chitin, regenerated chitin, partially N-acetylated chitin, and chitosan. N-bromosuccinamide completely inhibited the enzyme activity. This enzyme should be a good candidate for applications in the recycling of chitin waste.  相似文献   

14.
《Electroanalysis》2003,15(20):1577-1583
Laccase enzymes from two different sources, namely, tree laccase from Rhus vernicifera and fungal laccase from Coriolus hirsutus were used for the development of biosensor for catechol. Laccase was immobilized onto the amine terminated thiol monolayers on gold surface by glutaraldehyde coupling. From the different thiol monolayers investigated, cystamine was found to be optimal with respect to sensitivity, stability, reproducibility, and other electrochemical properties of the enzyme electrode. Linear calibration in the range between 1 and 400 μM for catechol was obtained for fungal laccase covalently coupled on the electrode surface. The kinetic parameters determined using the Lineweaver‐Burk and Eadie‐Hofstee plots were Km=0.65 mM and Vmax=24.5 μA for fungal laccase compared to Km=5.4 mM and Vmax=6.6 μA for tree laccase on cystamine monolayer. The electrode showed good stability for 1 month without loosing appreciable activity when stored dry in a refrigerator at ?20 °C.  相似文献   

15.
A xylanase-encoding gene, xyn11F63, was isolated from Penicillium sp. F63 CGMCC1669 using degenerated polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR techniques. The full-length chromosomal gene consists of 724 bp, including a 73-bp intron, and encodes a 217 amino acid polypeptide. The deduced amino acid sequence of xyn11F63 shows the highest identity of 70% to the xylanase from Penicillium sp. strain 40, which belongs to glycosyl hydrolases family 11. The gene was overexpressed in Pichia pastoris, and its activity in the culture medium reached 516 U ml−1. After purification to electrophoretic homogeneity, the enzyme showed maximal activity at pH 4.5 and 40°C, was stable at acidic buffers of pH 4.5–9.0, and was resistant to proteases (proteinase K, trypsin, subtilisin A, and α-chymotrypsin). The specific activity, K m, and V max for oat spelt xylan substrate was 7,988 U mg−1, 22.2 mg ml−1, and 15,105.7 μmol min−1 mg−1, respectively. These properties make XYN11F63 a potential economical candidate for use in feed and food industrial applications.  相似文献   

16.
A phosphite dehydrogenase gene (ptdhK) consisting of 1,011-bp nucleotides which encoding a peptide of 336 amino acid residues was cloned from Pseudomonas sp. K. gene ptdhK was expressed in Escherichia coli BL21 (DE3) and the corresponding recombinant enzyme was purified by metal affinity chromatography. The recombinant protein is a homodimer with a monomeric molecular mass of 37.2 kDa. The specific activity of PTDH-K was 3.49 U mg−1 at 25 °C. The recombinant PTDH-K exhibited maximum activity at pH 3.0 and at 40 °C and displayed high stability within a wide range of pHs (5.0 to 10.5). PTDH-K had a high affinity to its natural substrates, with K m values for sodium phosphite and NAD of 0.475 ± 0.073 and 0.022 ± 0.007 mM, respectively. The activity of PTDH-K was enhanced by Na+, NH4+, Mg2+, Fe2+, Fe3+, Co2+, and EDTA, and PTDH-K exhibited different tolerance to various organic solvents.  相似文献   

17.
A gene encoding chitin deacetylase was cloned by polymerase chain reaction from Aspergillus nidulans. Sequencing result showed 40% homology to the corresponding gene from Colletotrichum lindemuthianum. The complete gene contains an open reading frame of 747 nucleotides encoding a sequence of 249 amino acid residues. The chitin deacetylase gene was subcloned into a pET28a expression vector and expressed in Escherichia coli BL21 and then purified by metal affinity chromatography using a His-bind column. The purified chitin deacetylase demonstrated an activity of 0.77 U ml−1 for the glycol chitin substrates, and its specific activity was 4.17 U mg−1 for it. The optimal temperature and pH of the purified enzyme were 50 °C and 8.0, respectively. When glycol chitin was used as the substrate, K m was 4.92 mg ml−1, and K cat showed 6.25 s−1, thus the ratio of K cat and K m was 1.27 ml s−1 mg−1. The activity of chitin deacetylase was affected by a range of metal ions and ethylenediaminetetraacetic acid.  相似文献   

18.
As shown herein, a normal moving reaction boundary (MRB) formed by an alkaline buffer and a single acidic buffer had poor stacking to the new important plant growth promoter of phenazine-1-carboxylic acid (PCA) in soil due to the leak induced by its low pK a. To stack the PCA with low pK a efficiently, a novel stacking system of MRB was developed, which was formed by an alkaline buffer and double acidic buffers (viz., acidic sample and blank buffers). With the novel system, the PCA leaking into the blank buffer from the sample buffer could be well stacked by the prolonged MRB formed between the alkaline buffer and blank buffer. The relevant mechanism of stacking was discussed briefly. The stacking system, coupled with sample pretreatment, could achieve a 214-fold increase of PCA sensitivity under the optimal conditions (15 mM (pH 11.5) Gly-NaOH as the alkaline buffer, 15 mM (pH 3.0) Gly-HCl-acetonitrile (20%, v/v) as the acidic sample buffer, 15 mM (pH 3.0) Gly-HCl as the blank buffer, 3 min 13 mbar injection of double acidic buffers, benzoic acid as the internal standard, 75 μm i.d. × 53 cm (44 cm effective length) capillary, 25 kV and 248 nm). The limit of detection of PCA in soil was decreased to 17 ng/g, the intra-day and inter-day precision values (expressed as relative standard deviations) were 3.17–4.24% and 4.17–4.87%, respectively, and the recoveries of PCA at three concentration levels changed from 52.20% to 102.61%. The developed method could be used for the detection of PCA in soil at trace level.  相似文献   

19.
Optimal design and operation of bioreactors for insect cell culture is facilitated by functional relations providing quantitative information on cellular metabolite consumption kinetics, as well as on the specific cell growth rates (μG). Initial specific consumption rates of glucose, malate, and oxygen, and associated changes in μG, were measured forSpodoptera frugiperda clone 9 (Sf9) cells grown in batch suspension culture in medium containing 7–35 mM glucose, 0–16 mM malate, and 4–16 mM glutamine. The initial specific glucose consumption rate (q G ) could be described by a modified Michaelis-Menten equation treating malate as a “competitive” inhibitorK 1 = 6.5 mM) and glutamine as a “noncompetitive” inhibitorK I = 14 mM) ofq G , with aK m of 7.1 mM for glucose. All three carbon sources were found to increase μG in a saturable manner, and a modified Monod equation was employed to describe this relationship (μGmax = 0.047 h-1). The initial specific oxygen consumption rate (qO2) in Sf9 cells could be related to μG by the maintenance energy model, and it was calculated that, under typical culture conditions, about 15–20% of the cellular energy demand comes from functions not related to growth. Fitted parameters in mathematical expression for μg: K4, Monod constant for glucose (mM); K5, modified Monod constant for malate (mM); K6, Monod constant for glutamine (mM); mo2, specific consumption rate of oxygen by the cells under zero-growth conditions (nmol/cell/h); qF, initial specific fumarate production rate (nmol/cell/ h);q G , initial specific glucose consumption rate (nmol/cell/h); qGmax, maximum initial specific glucose consumption rate (nmol/cell/h);q M , initial specific malate consumption rate (nmol/cell/h); qo2, initial specific oxygen consumption rate (nmol/cell/h); Yo2, cell yield on oxygen (cells/nmol); μ, initial specific cell growth rate (h-1); μg, initial specific cell growth rate (h-1); μGmax, maximum initial specific cell growth rate (h-1).  相似文献   

20.
The production of extracellular and mycelia-associated penicillin G acylase (maPGA) with Mucor griseocyanus H/55.1.1 by surface-adhesion fermentation using Opuntia imbricata, a cactus, as a natural immobilization support was studied. Enzyme activity to form 6-aminopencillanic acid (6-APA) from penicillin G was assayed spectrophotometrically. The penicillin G hydrolysis to 6-APA was evaluated at six different times using PGA samples recovered from the skim milk medium at five different incubation times. Additionally, the effect of varying the penicillin G substrate concentration level on the PGA enzyme activity was also studied. The maximum reaction rate, V max, and the Michaelis constant, K M, were determined using the Michaelis–Menten model. The maximum levels for maPGA and extracellular activity were found to be 2,126.50 international unit per liter (IU/l; equal to 997.83 IU/g of support) at 48 h and 755.33 IU/l at 60 h, respectively. Kinetics of biomass production for total biomass showed a maximum growth at 60 h of 3.36 and 2.55 g/l (equal to 0.012 g of biomass per gram of support) for the immobilized M. griseocyanus biomass. The maPGA was employed for the hydrolysis of penicillin G to obtain 6-APA in a batch reactor. The highest quantity of 6-APA obtained was 226.16 mg/l after 40-min reaction. The effect of substrate concentration on maPGA activity was evaluated at different concentrations of penicillin G (0–10 mM). K M and V max were determined to be 3.0 × 10−3 M and 4.4 × 10−3 mM/min, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号