首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A family of 3d–4f aggregates have been reported through guiding the dual coordination modes of ligand anion (HL?) and in situ generated ancillary bridge driven self‐assembly coordination responses toward two different types of metal ions. Reactions of lanthanide(III) nitrate (Ln=Gd, Tb, Dy, Ho and Yb), nickel(II) acetate and phenol‐based ditopic ligand anion of 2‐[{(2‐hydroxypropyl)imino}methyl]‐6‐methoxyphenol (H2L) in MeCN‐MeOH (3 : 1) mixture and LiOH provided five new octanuclear Ni‐4f coordination aggregates from two Ni2Ln2 cubanes. Single‐crystal X‐ray diffraction analysis reveals that all the members of the family are isostructural, with the central core formed from the coupling of two distorted [Ni2Ln2O4] heterometallic cubanes [Ni2Ln2(HL)2(μ3‐OH)2(OH)(OAc)4]+ (Ln=Gd ( 1 ), Tb ( 2 ), Dy ( 3 ), Ho ( 4 ) and Yb ( 5 )). Higher coordination demand of 4f ions induced the coupling of the two cubes by (OH)(OAc)2 bridges. Variable temperature magnetic study reveals weak coupling between the Ni2+ and Ln3+ ions. For the Tb ( 2 ) and Dy ( 3 ) analogs, the compounds are SMMs without an applied dc field, whereas the Gd ( 1 ) analogue is not an SMM. The observation revealed thus that the anisotropy of the Ln3+ ions is central to display the SMM behavior within this structurally intriguing family of compounds.  相似文献   

2.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

3.
Six novel decanuclear clusters with formula of {[Fe8Ln2(O)4(OH)4(EtO)2(dhbp)4(dhbpH)2(piv)6]·4EtOH} (Ln = Y ( 1 ), Gd ( 2 ), Tb ( 3 ), Dy ( 4 ), Ho ( 5 ), Er ( 6 ), dhbpH2 = 6,6′‐dihydroxyl‐2,2′‐bipyridine, Hpiv = pivalic acid, EtOH = ethanol) have been synthesized and characterized. Single‐crystal and powder X‐ray diffraction analyses reveal that complexes 1 – 6 are isostructural and show a sandwich‐like FeIII8LnIII2 structure, in which the [Ln2] unit is sandwiched by two planar [Fe4] units. Magnetic properties of complexes 1 – 6 have been investigated and display dominant antiferromagnetic interactions, thereinto, complexes 4 and 6 display weak ferromagnetic behaviors associated with LnIII ions, while others are antiferromagnetic‐like features. Furthermore, complex 4 (FeIII8DyIII2) shows temperature/frequency‐dependent ac signals with an energy barrier of 4.1 K, indicating that complex 4 should be a single‐molecule magnet (SMM)  相似文献   

4.
The bifunctional ligand 2,6‐dipicolinoylbis(N,N‐diethylthiourea) (H2L) readily reacts with mixtures of Zn(CH3COO)2 and LnCl3 in MeOH at ambient temperature with formation of trinuclear heterobimetallic complexes [Zn2Ln(L)2(OAc)3] ( 1a – 1f ) (Ln = Ce, Nd, Sm, Gd, Dy, Er). The X‐ray single‐crystal diffraction and structural studies of the complexes revealed their isostructural nature, in which two doubly‐charged ligands {L2–} bind two Zn2+ ions with the terminal acylthiourea sites and one Ln3+ ion with the central 2,6‐pyridinedicarboxamide site. In the complexes, the coordination numbers of LnIII and ZnII ions are 9 and 5, respectively. Magnetic properties of the complexes were studied by temperature‐dependent dc magnetic measurements. The observed μeff values at room temperature are all closed to the calculated values. Fitting χM and M data of [Zn2Gd(L)2(OAc)3] ( 1d ) shows a giso value of 1.94.  相似文献   

5.
Two series of isostructural C3‐symmetric Ln3 complexes Ln3 ? [BPh4] and Ln3 ? 0.33[Ln(NO3)6] (in which LnIII=Gd and Dy) have been prepared from an amino‐bis(phenol) ligand. X‐ray studies reveal that LnIII ions are connected by one μ2‐phenoxo and two μ3‐methoxo bridges, thus leading to a hexagonal bipyramidal Ln3O5 bridging core in which LnIII ions exhibit a biaugmented trigonal‐prismatic geometry. Magnetic susceptibility studies and ab initio complete active space self‐consistent field (CASSCF) calculations indicate that the magnetic coupling between the DyIII ions, which possess a high axial anisotropy in the ground state, is very weakly antiferromagnetic and mainly dipolar in nature. To reduce the electronic repulsion from the coordinating oxygen atom with the shortest Dy?O distance, the local magnetic moments are oriented almost perpendicular to the Dy3 plane, thus leading to a paramagnetic ground state. CASSCF plus restricted active space state interaction (RASSI) calculations also show that the ground and first excited state of the DyIII ions are separated by approximately 150 and 177 cm?1, for Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6], respectively. As expected for these large energy gaps, Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6] exhibit, under zero direct‐current (dc) field, thermally activated slow relaxation of the magnetization, which overlap with a quantum tunneling relaxation process. Under an applied Hdc field of 1000 Oe, Dy3 ? [BPh4] exhibits two thermally activated processes with Ueff values of 34.7 and 19.5 cm?1, whereas Dy3 ? 0.33[Dy(NO3)6] shows only one activated process with Ueff=19.5 cm?1.  相似文献   

6.
The Schiff base ligand N1,N3‐bis(3‐methoxysalicylidene)diethylenetriamine (H2valdien) and the co‐ligand 6‐chloro‐2‐hydroxypyridine (Hchp) were used to construct two 3d–4f heterometallic single‐ion magnets [Co2Dy(valdien)2(OCH3)2(chp)2] ? ClO4 ? 5 H2O ( 1 ) and [Co2Tb(valdien)2(OCH3)2(chp)2] ? ClO4 ? 2 H2O ? CH3OH ( 2 ). The two trinuclear [CoIII2LnIII] complexes behave as a mononuclear LnIII magnetic system because of the presence of two diamagnetic cobalt(III) ions. Complex 1 has a molecular symmetry center, and it crystallizes in the C2/c space group, whereas complex 2 shows a lower molecular symmetry and crystallizes in the P21/c space group. Magnetic investigations indicated that both complexes are field‐induced single‐ion magnets, and the CoIII2–DyIII complex possesses a larger energy barrier [74.1(4.2) K] than the CoIII2–TbIII complex [32.3(2.6) K].  相似文献   

7.
Reaction of DyCl3 with two equivalents of NaN(SiMe3)2 in THF yielded {Dy(μ‐Cl)[N(SiMe3)2]2(THF)}2 ( 1 ). X‐ray crystal structure analysis revealed that 1 is a centrosymmetric dimer with asymmetrically bridging chloride ligands. The metal coordination arrangement can be best described as distorted trigonal bipyramid. The bond lengths of Ln–Cl and Ln–N showed a decreasing trend with the contraction of the size of Ln3+. Treatment of N,N‐bis(pyrrolyl‐α‐methyl)‐N‐methylamine (H2dpma) with 1 and known compound {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2, respectively, led to the formations of [Dy(μ‐Cl)(dpma)(THF)2]2 ( 2 ) and {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2 ( 3 ). Compounds 2 and 3 were fully characterized by single‐crystal X‐ray crystallography, elemental analysis, and 1H NMR spectroscopy. Structure determination indicated that 2 and 3 exhibit as centrosymmetric dimers with asymmetrically bridging chloride ligands. One pot reactions involving LnCl3 (Ln = Dy and Yb), LiN(SiMe3)2, and H2dpma were explored and desired products 2 and 3 were not yielded, which indicated that 1 and {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2 are the demanding precursors to synthesize Dysprosium and Ytterbium complexes supported by dpma2– ligand. Compounds 2 and 3 are the first reported lanthanide complexes chelated by dpma2– ligand.  相似文献   

8.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

9.
The cyanide building block [FeIII(pzphen)(CN)4] and its four lanthanide complexes [{FeIII(pzphen)(CN)4}2LnIII(H2O)5(DMF)3] · (NO3) · 2(H2O) · (CH3CN) [Ln = Nd ( 1 ), Sm ( 2 ), DMF = dimethyl formamide] and [{FeIII(pzphen)(CN)4}2LnIII(NO3)(H2O)2(DMF)2](CH3CN) [Ln = Gd ( 3 ), Dy ( 4 )] were synthesized and structurally characterized by single‐crystal X‐ray diffraction. Compounds 1 and 2 are ionic salts with two [FeIII(pzphen)(CN)4] cations and one LnIII ion, but compounds 3 and 4 are cyano‐bridged FeIIILnIII heterometallic 3d‐4f complexes exhibiting a trinuclear structure in the same conditions. Magnetic studies show that compound 3 is antiferromagnetic between the central FeIII and GdIII atoms. Furthermore, the trinuclear cyano‐bridged FeIII2DyIII compound 4 displays no single‐molecular magnets (SMMs) behavior by the alternating current magnetic susceptibility measurements.  相似文献   

10.
《化学:亚洲杂志》2017,12(5):507-514
Five hexanuclear lanthanide clusters of composition [Ln64‐O)2(HCOO)2L4(HL′)2(dmf)2] [Ln=Dy ( 1 ), Er ( 2 ), Ho ( 3 ), Tb ( 4 ), Gd ( 5 ); H2L=2‐{[2‐(hydroxymethyl)phenylimino]methyl}‐6‐methoxyphenol; H3L′=3‐{[2‐(hydroxymethyl)phenylimino]methyl}benzene‐1,2‐diol; H3L′ was derived in situ from the H2L ligand] were prepared under solvothermal conditions. The [Ln6] cores of 1 – 5 possess an unprecedented motif, namely, two tetrahedron Ln4 units sharing an edge and two vertices. The six LnIII ions of 1 – 5 are connected through two μ4‐O anions. Magnetic susceptibility studies reveal that complex 1 exhibits frequency dependence of the alternating current susceptibility typical of single‐molecule magnets. Complex 1 possesses a relatively large energy barrier of 85 K among all of the reported Dy6 single‐molecule magnets.  相似文献   

11.
S‐heterocyclic dicarboxylic acid, thiophene‐2,5‐dicarboxylic acid (H2TDC), was employed to construct a series of lanthanide‐organic frameworks (LnOFs) with coligand acetate, formulated as [Ln(TDC)(OAc)(H2O)]n [Ln = Eu ( 1 ), Tb ( 2 ), Gd ( 3 ), Dy ( 4 ), Sm ( 5 )] under hydrothermal conditions. Structure analysis reveals that 1 – 5 have dinuclear 3D metal organic frameworks (MOFs), in which TDC2– and OAc display (κ1‐κ1)‐(κ1–κ1)‐μ4 and (κ2‐κ1)‐μ2 coordination fashions, respectively. The dehydrated products of all compounds show high thermal stability above 410 °C. As for 1 , 2 , 4 , and 5 , the photoluminescence analyses exhibit characteristic luminescence emission bands of the corresponding lanthanide ions in the visible region. In particular, compound 2 displays bright green luminescence in the solid state with 5D4 lifetime of 0.510 ms and relative high overall quantum yield of 16 %, based on an ideal energy gap between the lowest triplet state energy level of H2TDC ligand and the 5D4 state energy level of Tb3+. The energy transfer mechanisms in compounds 1 and 2 were also discussed.  相似文献   

12.
Two isostructural heterometallic complexes, {[Dy3Ni3(H2O)3(mpko)9(O2)(NO3)3](ClO4) · 3CH3OH · 3CH3CN} ( 1 ) and {[Gd3Ni3(H2O)3(mpko)9(O2)(NO3)3](NO3) · 10.75CH3OH} ( 2 ) [mpkoH = 1‐(pyrazin‐2‐yl)ethanone oxime], were solvothermally synthesized by varying lanthanide ions with different magnetic anisotropy. Structural analyses revealed that both complexes contain a peroxide anion‐aggregated triangular {Ln33‐Ο2)}7+ core, which is surrounded by three NiII octahedra through threefold oxime linkages into a heterometallic hexanuclear cluster. Apparent antiferromagnetic interactions are observed between the adjacent spin carriers of 1 and 2 with the coupling constant JLn ··· Ni ≈ 12JLn ··· Ln. Additionally, 1 with highly anisotropic DyIII site shows slow magnetization relaxation under zero dc field and 2 constructed from isotropic GdIII ion displays significant cryogenic magnetocaloric effect with a maximum entropy change of 24.8 J · kg–1 · K–1 at 3.0 K and 70 kOe.  相似文献   

13.
Syntheses and Crystal Structures of Chalcogenido‐bridged Nickel Cluster Compounds [Ni5Se4Cl2(PPhEt2)6], [Ni12Se12(PnPr3)6], and [Ni18S18(PiPr3)6] The reaction of (R)ESiMe3 (R = SiMe3, Mes = C9H11; E = S, Se) with [NiCl2(PPhEt2)2] and [NiCl2(PR3)2] (R = nPr, iPr) gives new chalcogenido‐bridged nickel cluster compounds [Ni5Se4Cl2(PPhEt2)6]·2THF ( 1 ), [Ni12Se12(PnPr3)6]·2THF ( 2 ), and [Ni18S18(PiPr3)6]·2THF ( 3 ). The structures of these compounds were determined by single crystal X‐ray structural analyses.  相似文献   

14.
The 1:1:2 mixture of Ln(hfac)3, Zn(hfac)2, and NIT‐Pyrim (hfac = hexafluoroacetylacetonate, NIT‐Pyrim = 2‐pyrimidine‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide) afforded a series of 2p‐3d‐4f magnetic chains [Ln(hfac)3Zn(hfac)2(NIT‐Pyrim)2] [LnIII = Gd ( 1 ), Ho ( 2 ), Yb ( 3 )], in which Zn(hfac)2 and Ln(hfac)3 units are bridged by pyrimidine substituted nitronyl nitroxides through their NO moieties and pyrimidine nitrogen atoms. These complexes represent the first examples of 2p‐3d‐4f complexes with ZnII ions. Magnetic studies show that there exist ferromagnetic exchange couplings between the coordinated NO groups of radical ligands and the GdIII ions.  相似文献   

15.
Three new nickel(II) complexes formulated as [Ni2(1,3‐tpbd)(diimine)2(H2O)2]4+ [1,3‐tpbd = N,N,N′,N′‐tetrakis(2‐pyridylmethyl)benzene‐1,3‐diamine, where diimine is an N,N‐donor heterocyclic base like 1,10‐phenanthroline (phen),2,2′‐bipyridine (bpy), 4,5‐diazafluoren‐9‐one (dafo)], have been synthesized and structurally characterized by X‐ray crystallography: [Ni2(1,3‐tpbd)(phen)2(H2O)2]4+ (1), [Ni2(1,3‐tpbd)(bpy)2(H2O)2]4+(2) and [Ni2(1,3‐tpbd)(dafo)2(H2O)2]4+ (3). Single‐crystal diffraction reveals that the metal atoms in the complexes are all in a distorted octahedral geometry and in a trans arrangement around 1,3‐tpbd ligand. The interactions of the three complexes with calf thymus DNA (CT‐DNA) have been investigated by UV absorption, fluorescence spectroscopy, circular dichroism and viscosity. The apparent binding constant (Kapp) values are calculated to be 1.91 × 105 m ?1 for 1, 1.18 × 105 m ?1 for 2, and 1.35 × 105 m ?1 for 3, following the order 1 > 3 > 2. The higher DNA binding affinity of 1 is due to the involvement in partial insertion of the phen ring between the DNA base pairs. A decrease in relative viscosities of DNA upon binding to 1–3 is consistent with the DNA binding affinities. These complexes efficiently display oxidative cleavage of supercoiled DNA in the presence of H2O2 (250 µ m ), with 3 exhibiting the highest nuclease activity. The rate constants for the conversion of supercoiled to nicked DNA are 5.28 × 10?5 s?1 (for 1), 6.67 × 10?5 s?1 (for 2) and 1.39 × 10?4 s?1 (for 3), also indicating that complex 3 shows higher catalytic activity than 1 and 2. Here the nuclease activity is not readily correlated to binding affinity. The inhibitory effect of complexes 1–3 on thioredoxin reductase has also been examined. The IC50 values are calculated to be 26.54 ± 0.57, 31.03 ± 3.33 and 8.69 ± 2.54 µ m , respectively, showing a more marked inhibitory effect on thioredoxin reductase by complex 3 than the other two complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Three dinuclear lanthanide complexes [Ln2(H2L)2(NO3)4] [Ln = Dy ( 1 ), Tb ( 2 ), and Gd ( 3 )] [H3L = 2‐hydroxyimino‐N′‐[(2‐hydroxy‐3‐methoxyphenyl)methylidene]‐propanohydrazone] were solvothermally synthesized by varying differently anisotropic rare earth ions. Single‐crystal structural analyses demonstrate that all the three complexes are crystallographically isostructural with two centrosymmetric LnIII ions aggregated by a pair of monodeprotonated H2L anions. Weak intramolecular antiferromagnetic interactions with different strength were mediated by a pair of phenoxo bridges due to superexchange and/or single‐ion anisotropy. Additionally, the DyIII‐based entity shows the strongest anisotropy exhibits field‐induced single‐molecule magnetic behavior with two thermally activated relaxation processes. In contrast, 3 with isotropic GdIII ion has a significant cryogenic magnetocaloric effect with the maximum entropy change of 25.7 J · kg–1 · K–1 at 2.0 K and 70.0 kOe.  相似文献   

17.
A series of mer‐[Ln(NO3)3(Ph3PO)3] complexes were prepared from Ln(NO3)3 · xH2O and Ph3PO in chloroform (Ln = La, Nd, Sm, Eu, Gd, Tb, Dy, and Er). The La and Nd complexes were 0.25 CHCl3 solvates, whereas the others were solvent‐free. The identical reaction using Yb(NO3)3 · xH2O produced the unique salt trans‐[Yb(NO3)2(Ph3PO)4][Yb(NO3)4(Ph3PO)] · Et2O. All nitrate ions in all complexes are η2‐chelating. A comparison of the various [Ln(NO3)3(Ph3PO)3] structures, including those in the literature, reveals at least four common polymorphs, each of which is represented by isomorphic structures of multiple Ln ions. Luminescence of mer‐[Ln(NO3)3(Ph3PO)3] (Ln = Y, La, Nd, Sm, Eu, Gd, Tb, and Dy), trans‐[Yb(NO3)2(Ph3PO)4][Yb(NO3)4(Ph3PO)] and Ph3PO assignments are reported. Latva's empirical rule allows for the antenna effect, in which energy is transferred from the triplet state of the Ph3PO ligand, to occur only for Tb3+. Excitation via Ph3PO results in strong green luminescence for Tb3+ having twice the intensity as that which results from direct excitation of the f‐f transitions.  相似文献   

18.
To provide a better understanding of the recently published pure metalorganic NiI species, [Ni(cod)2][Al(ORF)4] ( 1 ) [cod = 1,5‐cyclooctadiene, RF = C(CF3)3], further characterizations were performed and analyzed. Thus, the solvation of 1 in THF was examined by EPR, surprisingly disclosing the initiation of a disproportionation reaction to [NiII(THF)6][Al(ORF)4]2 ( 3 ) and Ni0. Further studies concerning the ability of 1 to activate small molecules exhibit the formation of a remarkable [Ni3S2(cod)3]2+ cluster ( 5 ) in an oxidation reaction with S8, while EPR measurements of the resulting product in a reaction with oxygen indicate a possible coordination of O2. Single crystal X‐ray structures as well as spectroscopic analyses of 3 and 5 are described.  相似文献   

19.
Five dinuclear lanthanide complexes [Ln2L2(NO3)2(OAc)4] · 2CH3CN [Ln = Gd ( 1 ), Tb ( 2 ), Dy ( 3 ), Ho ( 4 ), and Er ( 5 )] [L = 2‐((2‐pyridinylmethylene)hydrazine)ethanol] were synthesized from the reactions of Ln(NO3)3 · 6H2O with L and CH3COOH in the presence of triethylamine. Their crystal structures were determined. They show similar dinuclear cores with the two lanthanide ions bridged by four acetate ligands in the μ2‐η12 and μ2‐η11 bridging modes. Each LnIII ion in complexes 1 – 5 is further chelated by one L ligand and one nitrate ion, leading to the formation of a nine‐coordinated mono‐capped square antiprism arrangement. The dinuclear molecules in 1 – 5 are consolidated by hydrogen bonds and π ··· π stacking interactions to build a two‐dimensional sheet. Their magnetic properties were investigated. It revealed antiferromagnetic interactions between the GdIII ions in 1 and ferromagnetic interactions between the TbIII ions in 2 . The profiles of χmT vs. T curves of 3 – 5 reveal that the magnetic properties of 3 – 5 are probably dominated by the thermal depopulation of the Stark sublevels of LnIII ions.  相似文献   

20.
Homoleptic perhalophenyl derivatives of divalent nickel complexes with the general formula [NBu4]2[NiII (C6X5)4] [X=F ( 1 ), Cl ( 2 )] have been prepared by low‐temperature treatment of the halo‐complex precursor [NBu4]2[NiBr4] with the corresponding organolithium reagent LiC6X5. Compounds 1 and 2 are electrochemically related by reversible one‐electron exchange processes with the corresponding organometallate(III) compounds [NBu4][NiIII (C6X5)4] [X=F ( 3 ), Cl ( 4 )]. The potentials of the [NiIII (C6X5)4]?/[NiII (C6X5)4]2? couples are +0.07 and ?0.11 V for X=F or Cl, respectively. Compounds 3 and 4 have also been prepared and isolated in good yield by chemical oxidation of 1 or 2 with bromine or the amminium salt [N(C6H4Br‐4)3][SbCl6]. The [NiIII (C6X5)4]? species have SP‐4 structures in the salts 3 and 4 , as established by single‐crystal X‐ray diffraction methods. The [NiII (C6F5)4]2? ion in the parent compound 1 has also been found to exhibit a rather similar SP‐4 structure. According to their SP‐4 geometry, the NiIII compounds (d7) behave as S=1/2 systems both at microscopic (EPR) and macroscopic levels (ac and dc magnetization measurements). The spin Hamiltonian parameters obtained from the analysis of the magnetic behavior of 3 and 4 within the framework of ligand field theory show that the unpaired electron is centered mainly on the metal atom, with >97 % estimated d contribution. Thermal decomposition of 3 and 4 proceeds with formation of the corresponding C6X5? C6X5 coupling compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号