首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 455 毫秒
1.
The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O?O bond. However, most of them function in a mixture of organic solvent and water and the O?O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru‐bda (H2bda=2,2′‐bipyridine‐6,6′‐dicarboxylic acid) water oxidation catalysts (WOCs) of formula [RuII(bda)(4‐OTEG‐pyridine)2] ( 1 , OTEG=OCH2CH2OCH2CH2OCH3) and [RuII(bda)(PySO3Na)2] ( 2 , PySO3?=pyridine‐3‐sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self‐assemble in water and form the O?O bond through different routes even though they have the same bda2? backbone. This work illustrates for the first time that the O?O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level.  相似文献   

2.
Two di- and tetranuclear Ru(bda) (bda: 2,2′-bipyridine-6,6′-dicarboxylate) macrocyclic complexes were synthesized and their catalytic activities in chemical and photochemical water oxidation investigated in a comparative manner to our previously reported trinuclear congener. Our studies have shown that the catalytic activities of this homologous series of multinuclear Ru(bda) macrocycles in homogeneous water oxidation are dependent on their size, exhibiting highest efficiencies for the largest tetranuclear catalyst. The turnover frequencies (TOFs) have increased from di- to tetranuclear macrocycles not only per catalyst molecule but more importantly also per Ru unit with TOF of 6 s−1 to 8.7 s−1 and 10.5 s−1 in chemical and 0.6 s−1 to 3.3 s−1 and 5.8 s−1 in photochemical water oxidation per Ru unit, respectively. Thus, for the first time, a clear structure–activity relationship could be established for this novel class of macrocyclic water oxidation catalysts.  相似文献   

3.
The use of electropolymerization to prepare electrocatalytically and photocatalytically active electrodes for water oxidation is described. Electropolymerization of the catalyst RuII(bda)(4‐vinylpyridine)2 (bda=2,2′‐bipyridine‐6,6′‐dicarboxylate) on planar electrodes results in films containing semirigid polymer networks. In these films there is a change in the water oxidation mechanism compared to the solution analogue from bimolecular to single‐site. Electro‐assembly construction of a chromophore–catalyst structure on mesoporous, nanoparticle TiO2 films provides the basis for a dye‐sensitized photoelectrosynthesis cell (DSPEC) for sustained water splitting in a pH 7 phosphate buffer solution. Photogenerated oxygen was measured in real‐time by use of a two‐electrode cell design.  相似文献   

4.
The outer coordination sphere of metalloenzyme often plays an important role in its high catalytic activity, however, this principle is rarely considered in the design of man-made molecular catalysts. Herein, four Ru-bda (bda=2,2′-bipyridine-6,6′-dicarboxylate) based molecular water oxidation catalysts with well-defined outer spheres are designed and synthesized. Experimental and theoretical studies showed that the hydrophobic environment around the Ru center could lead to thermodynamic stabilization of the high-valent intermediates and kinetic acceleration of the proton transfer process during catalytic water oxidation. By this outer sphere stabilization, a 6-fold rate increase for water oxidation catalysis has been achieved.  相似文献   

5.
Light‐driven water splitting was achieved using a dye‐sensitized mesoporous oxide film and the oxidation of bromide (Br?) to bromine (Br2) or tribromide (Br3?). The chemical oxidant (Br2 or Br3?) is formed during illumination at the photoanode and used as a sacrificial oxidant to drive a water oxidation catalyst (WOC), here demonstrated using [Ru(bda)(pic)2], ( 1 ; pic=picoline, bda=2,2′‐bipyridine‐6,6′‐dicarboxylate). The photochemical oxidation of bromide produces a chemical oxidant with a potential of 1.09 V vs. NHE for the Br2/Br? couple or 1.05 V vs. NHE for the Br3?/Br? couple, which is sufficient to drive water oxidation at 1 (RuV/IV≈1.0 V vs. NHE at pH 5.6). At pH 5.6, using a 0.2 m acetate buffer containing 40 mm LiBr and the [Ru(4,4′‐PO3H2‐bpy)(bpy)2]2+ ( RuP 2+, bpy=2,2′‐bipyridine) chromophore dye on a SnO2/TiO2 core–shell electrode resulted in a photocurrent density of around 1.2 mA cm?2 under approximately 1 Sun illumination and a Faradaic efficiency upon addition of 1 of 77 % for oxygen evolution.  相似文献   

6.
Water splitting is one of the most promising solutions for storing solar energy in a chemical bond. Water oxidation is still the bottleneck step because of its inherent difficulty and the limited understanding of the O?O bond formation mechanism. Molecular catalysts provide a platform for understanding this process in depth and have received wide attention since the first Ru‐based catalyst was reported in 1982. RuV=O is considered a key intermediate to initiate the O?O bond formation through either a water nucleophilic attack (WNA) pathway or a bimolecular coupling (I2M) pathway. Herein, we report a Ru‐based catalyst that displays water oxidation reactivity with RuIV=(O) with the help of a redox‐active ligand at pH 7.0. The results of electrochemical studies and DFT calculations disclose that ligand oxidation could significantly improve the reactivity of RuIV=O toward water oxidation. Under these conditions, sustained water oxidation catalysis occurs at reasonable rates with low overpotential (ca. 183 mV).  相似文献   

7.
Photosynthetic water oxidation in plants occurs at an inorganic calcium manganese oxo cluster, which is known as the oxygen evolving complex (OEC), in photosystem II. Herein, we report a synthetic OEC model based on a molecular manganese vanadium oxide cluster, [Mn4V4O17(OAc)3]3?. The compound is based on a [Mn4O4]6+ cubane core, which catalyzes the homogeneous, visible‐light‐driven oxidation of water to molecular oxygen and is stabilized by a tripodal [V4O13]6? polyoxovanadate and three acetate ligands. When combined with the photosensitizer [Ru(bpy)3]2+ and the oxidant persulfate, visible‐light‐driven water oxidation with turnover numbers of approximately 1150 and turnover frequencies of about 1.75 s?1 is observed. Electrochemical, mass‐spectrometric, and spectroscopic studies provide insight into the cluster stability and reactivity. This compound could serve as a model for the molecular structure and reactivity of the OEC and for heterogeneous metal oxide water‐oxidation catalysts.  相似文献   

8.
Polypyridyl and related ligands have been widely used for the development of water oxidation catalysts. Supposedly these ligands are oxidation‐resistant and can stabilize high‐oxidation‐state intermediates. In this work a series of ruthenium(II) complexes [Ru(qpy)(L)2]2+ (qpy=2,2′:6′,2′′:6′′,2′′′‐quaterpyridine; L=substituted pyridine) have been synthesized and found to catalyze CeIV‐driven water oxidation, with turnover numbers of up to 2100. However, these ruthenium complexes are found to function only as precatalysts; first, they have to be oxidized to the qpy‐N,N′′′‐dioxide (ONNO) complexes [Ru(ONNO)(L)2]3+ which are the real catalysts for water oxidation.  相似文献   

9.
The electrocatalytic urea oxidation reaction (UOR) provides more economic electrons than water oxidation for various renewable energy‐related systems owing to its lower thermodynamic barriers. However, it is limited by sluggish reaction kinetics, especially by CO2 desorption steps, masking its energetic advantage compared with water oxidation. Now, a lattice‐oxygen‐involved UOR mechanism on Ni4+ active sites is reported that has significantly faster reaction kinetics than the conventional UOR mechanisms. Combined DFT, 18O isotope‐labeling mass spectrometry, and in situ IR spectroscopy show that lattice oxygen is directly involved in transforming *CO to CO2 and accelerating the UOR rate. The resultant Ni4+ catalyst on a glassy carbon electrode exhibits a high current density (264 mA cm?2 at 1.6 V versus RHE), outperforming the state‐of‐the‐art catalysts, and the turnover frequency of Ni4+ active sites towards UOR is 5 times higher than that of Ni3+ active sites.  相似文献   

10.
Water oxidation is the key step in natural and artificial photosynthesis for solar‐energy conversion. As this process is thermodynamically unfavorable and is challenging from a kinetic point of view, the development of highly efficient catalysts with low energy cost is a subject of fundamental significance. Herein, we report on iron‐based films as highly efficient water‐oxidation catalysts. The films can be quickly deposited onto electrodes from FeII ions in acetate buffer at pH 7.0 by simple cyclic voltammetry. The extremely low iron loading on the electrodes is critical for improved atom efficiency for catalysis. Our results showed that this film could catalyze water oxidation in neutral phosphate solution with a turnover frequency (TOF) of 756 h?1 at an applied overpotential of 530 mV. The significance of this approach includes the use of earth‐abundant iron, the fast and simple method for catalyst preparation, the low catalyst loading, and the large TOF for O2 evolution in neutral aqueous media.  相似文献   

11.
卓启明  詹绍琦  段乐乐  刘畅  吴秀娟  Mårten S.G.Ahlquist  李福胜  孙立成 《催化学报》2021,42(3):460-469,中插35-中插47
水氧化反应可以提供四个电子和四个质子,反应产物是可以资源化的氧气,因而,水氧化反应是大规模能源转化和存储技术理想的阳极反应.但是,由于水氧化反应具有较高的热力学能垒,涉及四个电子和四个质子的转移过程以及氧-氧键(O–O)的形成,是一个耗能高且动力学缓慢的复杂反应.因此,开发高效的水氧化催化剂来加速水氧化反应速率,对于能源转化和存储相关技术至关重要.然而,人们对水氧化催化剂的合理设计和在催化反应中提高反应活性的方法了解甚少,在温和条件下促进O–O键的有效形成仍然是一个根本性的挑战.迄今为止,关于水氧化分子催化剂的研究主要集中在催化剂的配位结构(第一配位环境)和催化效率之间的关系上,水氧化分子催化剂的第二配位环境对其催化活性的影响尚未得到充分研究.将催化剂引入到电极表面时,其催化环境和均相反应时完全不同.因此,水氧化催化剂在电极表面的催化反应动力学、质子耦合电子转移过程以及其O–O键形成机理可能发生改变.本文以4-乙烯基吡啶为轴向配体的[Ru(bda)](络合物1,bda=2,2’-联吡啶-6,6’-二羧酸)水氧化分子催化剂,通过电化学聚合的方法将络合物1固载在玻璃碳电极表面,用于研究第二配位环境对电极表面水氧化分子催化剂催化机理的影响.通过直接聚合络合物1在玻璃碳表面得到电极材料poly-1@GC;将4-三氟甲基苯乙烯和苯乙烯作为限制单元分别与络合物1共聚,得到电极材料poly-1+P3F@GC和poly-1+PSt@GC.通过一系列电极表面动力学方法和DFT计算分别求出催化剂在三种电极材料中的反应级数ρcata、催化剂的溶液质子-原子转移性质、催化剂的水氧化氘动力学同位素效应KIEsH/D,以及[Ru(bda)]催化剂在不同材料中的偶极矩的变化.通过对比催化剂在不同电极材料中的催化行为和相关关键参数发现,电极表面催化剂的第二层配位环境对其水氧化反应过程中的O–O键形成机制和质子耦合电子转移过程有着显著的影响.[Ru(bda)]在直接聚合的电极材料poly-1@GC中,通过自由基耦合机理(I2M)形成O–O键.而当[Ru(bda)]与4-三氟甲基苯乙烯和苯乙烯共聚时,由于[Ru(bda)]催化剂被分散,不利于自由基耦合机理的发生,[Ru(bda)]在电极材料poly-1+P3F@GC和poly-1+PSt@GC中主要通过水分子亲核进攻机理进行(WNA)催化水氧化.同时,具有强偶极矩的4-三氟甲基苯基能够稳定[Ru(bda)]在催化过程的中间体,可以使引发O–O键生成的关键物种RuV=O的氧化电位发生明显的负向移动,使得[Ru(bda)]在poly-1+P3F@GC可以更容易触发水氧化反应,进而加快了[Ru(bda)]采用水分子亲核进攻机理时的催化反应速率.  相似文献   

12.
Three distinct functionalisation strategies have been applied to the in,in‐[{RuII(trpy)}2(μ‐bpp)(H2O)2]3+ (trpy=2,2′:6′,2′′‐terpyridine, bpp=bis(pyridine)pyrazolate) water‐oxidation catalyst framework to form new derivatives that can adsorb onto titania substrates. Modifications included the addition of sulfonate, carboxylate, and phosphonate anchoring groups to the terpyridine and bis(pyridyl)pyrazolate ligands. The complexes were characterised in solution by using 1D NMR, 2D NMR, and UV/Vis spectroscopic analysis and electrochemical techniques. The complexes were then anchored on TiO2‐coated fluorinated tin oxide (FTO) films, and the reactivity of these new materials as water‐oxidation catalysts was tested electrochemically through controlled‐potential electrolysis (CPE) with oxygen evolution detected by headspace analysis with a Clark electrode. The results obtained highlight the importance of the catalyst orientation with respect to the titania surface in regard to its capacity to catalytically oxidize water to dioxygen.  相似文献   

13.
Electrochemical water splitting requires efficient, low‐cost water oxidation catalysts to accelerate the sluggish kinetics of the water oxidation reaction. A rapid photocorrosion method is now used to synthesize the homogeneous amorphous nanocages of Cu‐Ni‐Fe hydr(oxy)oxide as a highly efficient electrocatalyst for the oxygen evolution reaction (OER). The as‐fabricated product exhibits a low overpotential of 224 mV on a glassy carbon electrode at 10 mA cm?2 (even lower down to 181 mV when supported on Ni foam) with a Tafel slope of 44 mV dec?1 for OER in an alkaline solution. The obtained catalyst shows an extraordinarily large mass activity of 1464.5 A g?1 at overpotential of 300 mV, which is the highest mass activity for OER. This synthetic strategy may open a brand new pathway to prepare copper‐based ternary amorphous nanocages for greatly enhanced oxygen evolution.  相似文献   

14.
Dedicated to Professor Jerald S. Bradshaw Bis(2′‐hydroxyethyl) 2,6‐pyridinedicarboxylate (1) was prepared and the structure was characterized in solid (fourier transform‐ir and X‐ray analyses), in liquid (1H and 13C nmr titrations), and in the gas‐phase (fast atom bombardment (fab) and electron spray ionization (esi) ms). Two bis(2′‐hydroxyethyl) 2,6‐pyridinedicarboxylate molecules each with an included water molecule are bound together through hydrogen bonding to give a pseudo‐macrocycle in the solid state and in chloroform solution. The fab and esi mass spectra also suggested that ligand 1 forms a dimer in the gas‐phase.  相似文献   

15.
The reactivity of cyclohexene (CHE) over catalysts containing 0.3 wt% Pt, 0.3 wt% Re or 0.3 wt% Pt + 0.3 wt% Re supported on Na‐ and H‐mordenite has been studied in an atmospheric flow‐type reactor at a temperature range of 100–400 °C, using a flow of hydrogen (20 cm3/min). The catalysts were characterized for acid sites strength‐distribution, using desorption of ammonia in DSC. The acidity of H‐mordenite (HM) is attributed to strong acid sites, whereas the acidity of Na‐mordenite (NaM) is due to weak acid sites which are not involved in the catalytic reaction under study. The catalysts containing HM enhance the reactivity of CHE for isomorization reactions. However, the reactivity of CHE on NaM catalysts enhances only the hydrogenation and dehydrogenation reactions. Pt/HM is the most selective catalyst for isomerization of CHE, whereas Pt/NaM and PtRe/NaM catalysts are the most selective for hydrogenation and dehydrogenation reactions, respectively. The hydroisomorization of CHE seems to depend only on the acidity of the catalysts, whereas both hydrogenation and dehydrogenation reactions were controlled by metallic function of the catalysts.  相似文献   

16.
The oxidative cross‐coupling of aromatic substrates without the necessity of leaving groups or catalysts is described. The selective formation of partially protected nonsymmetric 2,2′‐biphenols via electroorganic synthesis was accomplished with a high yield of isolated product. Since electric current is employed as the terminal oxidant, the reaction is reagent‐free; no reagent waste is generated as only electrons are involved. The reaction is conducted in an undivided cell, and is suitable for scale‐up and inherently safe. The implementation of O‐silyl‐protected phenols in this transformation results in both significantly enhanced yields and higher selectivity for the desired nonsymmetric 2,2′‐biphenols. The use of a bulky silyl group to block one hydroxyl moiety makes the final product less prone to oxidation. Furthermore, the partially silyl‐protected 2,2′‐biphenols are versatile building blocks that usually require tedious or low‐yielding synthetic pathways. Additionally, this strategy facilitates a large variety of new substrate combinations for oxidative cross‐coupling reactions.  相似文献   

17.
The oxidation of CO is the archetypal heterogeneous catalytic reaction and plays a central role in the advancement of fundamental studies, the control of automobile emissions, and industrial oxidation reactions. Copper‐based catalysts were the first catalysts that were reported to enable the oxidation of CO at room temperature, but a lack of stability at the elevated reaction temperatures that are used in automobile catalytic converters, in particular the loss of the most reactive Cu+ cations, leads to their deactivation. Using a combined experimental and theoretical approach, it is shown how the incorporation of titanium cations in a Cu2O film leads to the formation of a stable mixed‐metal oxide with a Cu+ terminated surface that is highly active for CO oxidation.  相似文献   

18.
Oxygen formation through water oxidation catalysis is a key reaction in the context of fuel generation from renewable energies. The number of homogeneous catalysts that catalyze water oxidation at high rate with low overpotential is limited. Ruthenium complexes can be particularly active, especially if they facilitate a dinuclear pathway for oxygen bond formation step. A supramolecular encapsulation strategy is reported that involves preorganization of dilute solutions (10?5 m ) of ruthenium complexes to yield high local catalyst concentrations (up to 0.54 m ). The preorganization strategy enhances the water oxidation rate by two‐orders of magnitude to 125 s?1, as it facilitates the diffusion‐controlled rate‐limiting dinuclear coupling step. Moreover, it modulates reaction rates, enabling comprehensive elucidation of electrocatalytic reaction mechanisms.  相似文献   

19.
Rational molecular design of catalytic systems capable of smooth O? O bond formation is critical to the development of efficient catalysts for water oxidation. A new ruthenium complex was developed, which bears pendant SO3? groups in the secondary coordination sphere: [Ru(terpy)(bpyms)(OH2)] (terpy=2,2′:6′,2′′‐terpyridine, bpyms=2,2′‐bipyridine‐5,5′‐bis(methanesulfonate)). Water oxidation driven by a Ce4+ oxidant is distinctly accelerated upon introduction of the pendant SO3? groups in comparisons to the parent catalyst, [Ru(terpy)(bpy)(OH2)]2+ (bpy=2,2′‐bipyridine). Spectroscopic, electrochemical, and crystallographic investigations concluded that the pendant SO3? groups promote the formation of an O? O bond via the secondary coordination sphere on the catalyst, whereas the influence of the pendant SO3? groups on the electronic structure of the [Ru(terpy)(bpy)(OH2)]2+ core is negligible. The results of this work indicate that modification of the secondary coordination sphere is a valuable strategy for the design of water oxidation catalysts.  相似文献   

20.
Catalyzing the covalent modification of aliphatic amino groups, such as the lysine (Lys) side chain, by nucleic acids has been challenging to achieve. Such catalysis will be valuable, for example, for the practical preparation of Lys‐modified proteins. We previously reported the DNA‐catalyzed modification of the tyrosine and serine hydroxy side chains, but Lys modification has been elusive. Herein, we show that increasing the reactivity of the electrophilic reaction partner by using 5′‐phosphorimidazolide (5′‐Imp) rather than 5′‐triphosphate (5′‐ppp) enables the DNA‐catalyzed modification of Lys in a DNA‐anchored peptide substrate. The DNA‐catalyzed reaction of Lys with 5′‐Imp is observed in an architecture in which the nucleophile and electrophile are not preorganized. In contrast, previous efforts showed that catalysis was not observed when Lys and 5′‐ppp were used in a preorganized arrangement. Therefore, substrate reactivity is more important than preorganization in this context. These findings will assist ongoing efforts to identify DNA catalysts for reactions of protein substrates at lysine side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号