首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The silyl amide Et2SiCl‐NLi‐SitBu3 can be cleanly prepared from precursor silylamine Et2SiCl‐NH‐SitBu3 and Li[nBu]. The CF3SO3SiMe3 induced LiCl elimination of Et2SiCl‐NLi‐SitBu3 in thf afforded a 2‐silaazetidine derivative by [2+2] cycloaddition of Et2Si=N–SitBu3 with Et2Si(OCH=CH2)–NH–SitBu3. X‐ray quality crystals of this 2‐silaazetidine derivative (triclinic, space group P$\bar{1}$ ) were grown from benzene at room temperature. The starting material for this approach, Et2SiCl–NH–SitBu3, is water‐sensitive. Hydrolysis of Et2SiCl‐NH‐SitBu3 gave [tBu3SiNH3]Cl along with (Et2SiO)n oligomers. The hydro chloride [tBu3SiNH3]Cl could be isolated and was characterized by X‐ray crystallography (trigonal, space group P$\bar{3}$ ).  相似文献   

2.
tBu2P–PLi–PtBu2·2THF reacts with [cis‐(Et3P)2MCl2] (M = Ni, Pd) yielding [(1,2‐η‐tBu2P=P–PtBu2)Ni(PEt3)Cl] and [(1,2‐η‐tBu2P=P–PtBu2)Pd(PEt3)Cl], respectively. tBu2P– PLi–PtBu2 undergoes an oxidation process and the tBu2P–P–PtBu2 ligand adopts in the products the structure of a side‐on bonded 1,1‐di‐tert‐butyl‐2‐(di‐tert‐butylphosphino)diphosphenium cation with a short P–P bond. Surprisingly, the reaction of tBu2P–PLi–PtBu2·2THF with [cis‐(Et3P)2PtCl2] does not yield [(1,2‐η‐tBu2P=P–PtBu2)Pt(PEt3)Cl].  相似文献   

3.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

4.
The NHC supersilyl silver complex [Ag(IPr)SitBu3] (IPr = NHCIPr) was prepared by treatment of Ag(IPr)Cl with Na(thf)2[SitBu3] in benzene/thf at room temperature. X-ray quality crystals of the NHC supersilyl silver complex [Ag(IPr)SitBu3] (monoclinic, space group P21/m) were grown from heptane at room temperature. The 29Si NMR spectrum of a solution of [Ag(IPr)SitBu3] in C6D6 revealed two doublets caused by coupling to 107Ag and 109Ag nuclei. We further investigated the possibility of a conversion of triel halides EX3 by treatment with [Ag(IPr)SitBu3]. At ambient temperature the reaction of [Ag(IPr)SitBu3] with an excess of EX3 yielded tBu3SiEX2 (E = B, Al; X = Cl, Br; E = Ga; X = Cl) and IPr · EX3 (EX3 = BCl3, BBr3, AlCl3, AlBr3, GaCl3). The identity of tBu3SiEX2 and IPr · EX3 was confirmed by comparison with authentic samples.  相似文献   

5.
The role of intramolecular metal???π‐arene interactions has been investigated in the solid‐state structures of a series of main group compounds supported by the bulky amide ligands, [N(tBuAr)(SiR3)]? (tBuAr=2,6‐(CHPh2)2‐4‐tBuC6H2, R=Me, Ph). The lithium and potassium amide salts showed different patterns of solvation and demonstrated that the SiPh3 substituent is able to be involved in stabilizing the electrophilic metal. These group 1 metal compounds served as ligand transfer reagents to access a series of bismuth(III) halides. Chloride extraction from Bi(N{tBuAr}{SiPh3})Cl2 using AlCl3 afforded the 1:1 salt [Bi(N{tBuAr}{SiPh3})Cl][AlCl4]. This was accompanied by a significant rearrangement of the stabilizing π‐arene contacts in the solid‐state. Attempted preparation of the corresponding tetraphenylborate salt resulted in phenyl‐transfer and generation of the neutral Bi(N{tBuAr}{SiPh3})(Ph)Cl.  相似文献   

6.
The platinum complex [Pt(ItBuiPr′)(ItBuiPr)][BArF] interacts with tertiary silanes to form stable (<0 °C) mononuclear PtII σ‐SiH complexes [Pt(ItBuiPr′)(ItBuiPr)(η1‐HSiR3)][BArF]. These compounds have been fully characterized, including X‐ray diffraction methods, as the first examples for platinum. DFT calculations (including electronic topological analysis) support the interpretation of the coordination as an unusual η1‐SiH. However, the energies required for achieving a η2‐SiH mode are rather low, and is consistent with the propensity of these derivatives to undergo Si?H cleavage leading to the more stable silyl species [Pt(SiR3)(ItBuiPr)2][BArF] at room temperature.  相似文献   

7.
Synthesis and Structures of Sr6P8 Polyhedra in Mixed Phosphanides/Phosphandiides of Strontium The strontiation of H2PSiiPr3 ( 1 ) with (THF)2Sr[N(SiMe3)2]2 in THF yields colorless tetrakis(tetrahydrofuran‐O)strontium bis(triisopropylsilylphosphanide) ( 3 ). The central alkaline earth metal atom has an octahedral environment with the phosphanide ligands in trans position. The homometalation in toluene leads to the elimination of 1 and THF. Cooling of this solution gives crystals of colorless tetrakis(tetrahydrofuran‐O)hexastrontium‐tetrakis(triisopropylsilylphosphanide)‐tetrakis(triisopropylsilylphosphandiide) ( 4 ). The equimolar reaction of H2PSitBu3 ( 2 ) with (THF)2Sr[N(SiMe3)2]2 in toluene yields in the first step heteroleptic dimeric {(Me3Si)2NSr(THF)2[P(H)SitBu3]}2 ( 5 )2. This compounds monomerizes in THF to (Me3Si)2N–Sr(THF)4[P(H)SitBu3] ( 6 ), which forms an equilibrium with the homoleptic dismutation products (THF)2Sr[N(SiMe3)2]2 and (THF)4Sr[P(H)SitBu3]2 ( 7 ). Compound ( 5 )2 undergoes a intramolecular strontiation and bis(tetrahydrofuran‐O)hexastrontium‐tetrakis[tri(tert‐butyl)silylphosphanide]‐tetrakis[tri(tert‐butyl)silylphosphandiide] ( 8 ) is isolated. The central Sr6P8‐polyhedra of 4 and 8 are very similar.  相似文献   

8.
Synthesis of a Hexanuclear Calcium–Phosphorus‐Cage The metalation of tri(tert‐butyl)silylphosphane with calcium bis[bis(trimethylsilyl)amide] yields the dimer {(Me3Si)2N–Ca(THF)[μ‐P(H)SitBu3]}2 ( 1 ). In THF monomerization occurs and dismutation reactions lead to the homoleptic compounds, namely (THF)2Ca[N(SiMe3)2]2 and (THF)4Ca[P(H)SitBu3]2. In toluene, 1 undergoes dismutation reactions, bis(tetrahydrofuran)calcium bis[bis(trimethylsilyl)amide] is regained and [(Me3Si)2N–Ca(THF)]2Ca[P(H)SitBu3]4 ( 2 ) precipitates. At raised temperatures, 2 undergoes a homometallic metalation with the loss of two equivalents of HN(SiMe3)2 and dimerizes. The thus formed cage compound (THF)2Ca6[PSitBu3]4[P(H)SitBu3]4 ( 3 ) with a central Ca4P4 heterocubane moiety crystallizes upon cooling of the toluene solution. The molecular structures of 2 and 3 were determined.  相似文献   

9.
We report the synthesis of [n]manganoarenophanes (n=1, 2) featuring boron, silicon, germanium, and tin as ansa‐bridging elements. Their preparation was achieved by salt‐elimination reactions of the dilithiated precursor [Mn(η5‐C5H4Li)(η6‐C6H5Li)]?pmdta (pmdta=N,N,N′,N′,N′′‐pentamethyldiethylenetriamine) with corresponding element dichlorides. Besides characterization by multinuclear NMR spectroscopy and elemental analysis, the identity of two single‐atom‐bridged derivatives, [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] and [Mn(η5‐C5H4)(η6‐C6H5)SiPh2], could also be determined by X‐ray structural analysis. We investigated for the first time the reactivity of these ansa‐cyclopentadienyl–benzene manganese compounds. The reaction of the distannyl‐bridged complex [Mn(η5‐C5H4)(η6‐C6H5)Sn2tBu4] with elemental sulfur was shown to proceed through the expected oxidative addition of the Sn?Sn bond to give a triatomic ansa‐bridge. The investigation of the ring‐opening polymerization (ROP) capability of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] showed that an unexpected, unselective insertion into the Cipso?Sn bonds of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] had occurred.  相似文献   

10.
A sterically encumbering multidentate β‐diketiminato ligand, tBuL2 (tBuL2=[ArNC(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2NMe2]?, Ar=2,6‐iPr2C6H3), is reported in this study along with its coordination chemistry to zirconium(IV). Using the lithio salt of this ligand, Li(tBuL2) ( 4 ), the zirconium(IV) precursor (tBuL2)ZrCl3 ( 6 ) could be readily prepared in 85 % yield and structurally characterized. Reduction of 6 with 2 equiv of KC8 resulted in formation of the terminal and mononuclear zirconium imide‐chloride [C(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2NMe2]Zr(=NAr)(Cl) ( 7 ) as the result of reductive C=N cleavage of the imino fragment in the multidentate ligand tBuL2 by an elusive ZrII species (tBuL2)ZrCl ( A ). The azabutadienyl ligand in 7 can be further reduced by 2 e? with KC8 to afford the anionic imide [K(THF)2]{[CH(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2N(Me)CH2]Zr=NAr} ( 8‐2THF ) in 42 % isolated yield. Complex 8‐2THF results from the oxidative addition of an amine C?H bond followed by migration to the vinylic group of the formal [C(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2NMe2]? ligand in 7 . All halides in 6 can be replaced with azides to afford (tBuL2)Zr(N3)3 ( 9 ) which was structurally characterized, and reduction with two equiv of KC8 also results in C=N bond cleavage of tBuL2 to form [C(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2NMe2]Zr(=NAr)(N3) ( 10 ), instead of the expected azide disproportionation to N3? and N2. Solid‐state single crystal structural studies confirm the formation of mononuclear and terminal zirconium imido groups in 7 , 8‐Et2O , and 10 with Zr=NAr distances being 1.8776(10), 1.9505(15), and 1.881(3) Å, respectively.  相似文献   

11.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXIV. Formation and Structure of [μ‐(1,2 : 2‐η‐tBu2P–P){Mo(CO)2cp′}2] [cp′Mo(CO)2]2 (cp′ = C5H4tBu) reacts with tBu2P–P=P(Me)tBu2 to yield the compound [μ‐(1,2 : 2‐η‐tBu2P–P){Mo(CO)2cp′}2], which crystallizes in the space group P212121 with a = 1202.42(7), b = 1552.48(8), and c = 1765.3(1) pm.  相似文献   

12.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXIII. Reactions of tBu2P–P=P(Me)tBu2 with (Et3P)2NiCl2 and [{η2‐C2H4}Ni(PEt3)2] tBu2P–P=P(Me)tBu2 ( 1 ) forms with (Et3P)2NiCl2 ( 2 ) and Na(Nph) the [μ‐(1,3 : 2,3‐η‐tBu2P4tBu2){Ni(PEt3)Cl}2] ( 3 ) as main product. Using Na/Hg instead as reducing agent the Ni0 compounds [{η2tBu2P–P}Ni(PEt3)2] ( 4 ), [{η2tBu2P–P=P–PtBu2}Ni(PEt3)2] ( 5 ) and [(Et3P)Ni(μ‐PtBu2)]2 ( 6 ) with four‐membered Ni2P2 ring result. [{η2‐C2H4}Ni(PEt3)2] yields with 1 also 4 . The compounds were characterized by 1H and 31P{1H} NMR investigations and 3 also by a single crystal X‐ray analysis. It crystallizes triclinic in the space group P 1 with a = 1129.4(2), b = 1256.8(3), c = 1569.5(3) pm, α = 72.44(3)°, β = 70.52(3)° and γ = 74.20(3)°.  相似文献   

13.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)n(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (n = 4; 5) and [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] The reaction of [Ru2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 2 ) with dppm yields the dinuclear species [Ru2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ) (dppm = Ph2PCH2PPh2). Under thermal or photolytic conditions 3 loses very easily one carbonyl ligand and affords the corresponding electronically and coordinatively unsaturated complex [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). 4 is also obtainable by an one‐pot synthesis from [Ru3(CO)12], an excess of tBu2PH and stoichiometric amounts of dppm via the formation of [Ru2(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)2] ( 1 ). 4 exhibits a Ru–Ru double bond which could be confirmed by addition of methylene to the dimetallacyclopropane [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ). The molecular structures of 3 , 4 and 5 were determined by X‐ray crystal structure analyses.  相似文献   

14.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XVI [1] Reactions of [g2-{P–PtBu2}Pt(PPh3)2] and [g2-{P–PtBu2}Pt(dppe)] with Metal Carbonyls. Formation of [g2-{(CO)5M · PPtBu2}Pt(PPh3)2] (M = Cr, W) and [g2-{(CO)5Cr · PPtBu2}Pt(dppe)] [η2-{P–PtBu2}Pt(PPh3)2] 4 reacts with M(CO)5 · THF (M = Cr, W) by adding the M(CO)5 group to the phosphinophosphinidene ligand yielding [η2-{(CO)5Cr · PPtBu2}Pt(PPh3)2] 1 , or [η2-{(CO)5W · PPtBu2}Pt(PPh3)2] 2 , respectively. Similarly, [η2-{P–PtBu2}Pt(dppe)] 5 yields [η2-{(CO)5Cr · PPtBu2}Pt(dppe)] 3 . Compounds 1 , 2 and 3 are characterized by their 1H- and 31P-NMR spectra, for 2 and 3 also crystal structure determinations were performed. 2 crystallizes in the monoclinic space group P21/n (no. 14) with a = 1422.7(1) pm, b = 1509.3(1) pm, c = 2262.4(2) pm, β = 103.669(9)°. 3 crystallizes in the triclinic space group P1 (no. 2) with a = 1064.55(9) pm, b = 1149.9(1) pm, c = 1693.2(1) pm, α = 88.020(8)°, β = 72.524(7)°, γ = 85.850(8)°.  相似文献   

15.
tBu2P‐P=P(Me)tBu2 reacts with [Fe2(CO)9] to give [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)3}{Fe(CO)4}] ( 1 ) and [trans‐(tBu2MeP)2Fe(CO)3]( 2 ). With [(η2‐C8H14)2Fe(CO)3] in addition to [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)2PMetBu2}‐{Fe(CO)4}] ( 10 ) and 2 also [(μ‐PtBu2){μ‐P‐Fe(CO)3‐PMetBu2}‐{Fe(CO)3}2(Fe‐Fe)]( 9 ) is formed. 1 crystallizes in the monoclinic space group P21/c with a = 875.0(2), b = 1073.2(2), c = 3162.6(6) pm and β = 94.64(3)?. 2 crystallizes in the monoclinic space group P21/c with a = 1643.4(7), b = 1240.29(6), c = 2667.0(5) pm and β = 97.42(2)?. 9 crystallizes in the monoclinic space group P21/n with a = 1407.5(5), b = 1649.7(5), c = 1557.9(16) pm and β = 112.87(2)?.  相似文献   

16.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXII. The Formation of [η2‐{tBu–P=P–SiMe3}Pt(PR3)2] from (Me3Si)tBuP–P=P(Me)tBu2 and [η2‐{C2H4}Pt(PR3)2] (Me3Si)tBuP–P = P(Me)tBu2 reacts with [η2‐{C2H4}Pt(PR3)2] yielding [η2‐{tBu–P=P–SiMe3}Pt(PR3)2]. However, there is no indication for an isomer which would be the analogue to the well known [η2‐{tBu2P–P}Pt(PPh3)2]. The syntheses and NMR data of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] and [η2‐{tBu–P=P–SiMe3}Pt(PMe3)2] as well as the results of the single crystal structure determination of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] are reported.  相似文献   

17.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   

18.
The analogy of the reactivity of group 1 phosphides to that of FLPs is further demonstrated by reactions with CO, affording a new synthetic route to acyl‐phosphide anions. The reaction of [K(18‐crown‐6)][PtBu2] ( 1 ) with CO affords [(18‐crown‐6)K?THF2][ZtBuP=C(tBu)O] ( 2?THF2 ) as the major product, and the minor product [K6(18‐crown‐6)][(tBu2PCO)2]3 ( 3 ). Species 2 reacts with either BPh3 or additional CO to give [K(18‐crown‐6)][(Ph3B)tBuPC(tBu)O] ( 4 ) and [K(18‐crown‐6)][(OCtBu)2P] ( 5 ), respectively. The acyl‐phosphide anion 2 is thought to be formed by a photochemically induced radical process involving a transient species with triplet carbene character, prompting 1,2‐tert‐butyl group migration. A similar process is proposed for the subsequent reaction of 2 with CO to give 5 .  相似文献   

19.
The potassium dihydrotriazinide K(LPh,tBu) ( 1 ) was obtained by a metal exchange route from [Li(LPh,tBu)(THF)3] and KOtBu (LPh,tBu = [N{C(Ph)=N}2C(tBu)Ph]). Reaction of 1 with 1 or 0.5 equivalents of SmI2(thf)2 yielded the monosubstituted SmII complex [Sm(LPh,tBu)I(THF)4] ( 2 ) or the disubstituted [Sm(LPh,tBu)2(THF)2] ( 3 ), respectively. Attempted synthesis of a heteroleptic SmII amido‐alkyl complex by the reaction of 2 with KCH2Ph produced compound 3 due to ligand redistribution. The YbII bis(dihydrotriazinide) [Yb(LPh,tBu)2(THF)2] ( 4 ) was isolated from the 1:1 reaction of YbI2(THF)2 and 1 . Molecular structures of the crystalline compounds 2 , 3· 2C6H6 and 4· PhMe were determined by X‐ray crystallography.  相似文献   

20.
[Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)]: Synthesis, X‐ray Crystal Structure and Isomerization Na[Fe2(μ‐CO)(CO)6(μ‐PtBu2)] ( 1 ) reacts with [NO][BF4] at —60 °C in THF to the nitrosyl complex [Fe2(CO)6(NO)(μ‐PtBu2)] ( 2 ). The subsequent reaction of 2 with phosphanes (L) under mild conditions affords the complexes [Fe2(CO)5(NO)L(μ‐PtBu2)], L = PPh3, ( 3a ); η‐dppm (dppm = Ph2PCH2PPh2), ( 3b ). In this case the phosphane substitutes one carbonyl ligand at the iron tetracarbonyl fragment in 2 , which was confirmed by the X‐ray crystal structure analysis of 3a . In solution 3b loses one CO ligand very easily to give dppm as bridging ligand on the Fe‐Fe bond. The thus formed compound [Fe2(CO)4(NO)(μ‐PtBu2)(μ‐dppm)] ( 4 ) occurs in solution in different solvents and over a wide temperature range as a mixture of the two isomers [Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐dppm)] ( 4a ) and [Fe2(CO)4(μ‐NO)(μ‐PtBu2)(μ‐dppm)] ( 4b ). 4a was unambiguously characterized by single‐crystal X‐ray structure analysis while 4b was confirmed both by NMR investigations in solution as well as by means of DFT calculations. Furthermore, the spontaneous reaction of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ) with NO at —60 °C in toluene yields a complicated mixture of products containing [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 6 ) as main product beside the isomers 4a and 4b occuring in very low yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号