首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The controllable tuning of the excited states in a series of phosphine‐oxide hosts ( DPExPOCzn ) was realized through introducing carbazolyl and diphenylphosphine‐oxide (DPPO) moieties to adjust the frontier molecular orbitals, molecular rigidity, and the location of the triplet excited states by suppressing the intramolecular interplay of the combined multi‐insulating and meso linkage. On increasing the number of substituents, simultaneous lowering of the first singlet energy levels (S1) and raising of the first triplet energy levels (T1, about 3.0 eV) were achieved. The former change was mainly due to the contribution of the carbazolyl group to the HOMOs and the extended conjugation. The latter change was due to an enhanced molecular rigidity and the shift of the T1 states from the diphenylether group to the carbazolyl moieties. This kind of convergent modulation of excited states not only facilitates the exothermic energy transfer to the dopants in phosphorescent organic light‐emitting diodes (PHOLEDs), but also realizes the fine‐tuning of electrical properties to achieve the balanced carrier injection and transportation in the emitting layers. As the result, the favorable performance of blue‐light‐emitting PHOLEDs was demonstrated, including much‐lower driving voltages of 2.6 V for onset and 3.0 V at 100 cd m?2, as well as a remarkably improved E.Q.E. of 12.6 %.  相似文献   

2.
C60–bodipy triads and tetrads based on the energy‐funneling effect that show broadband absorption in the visible region have been prepared as novel triplet photosensitizers. The new photosensitizers contain two or three different light‐harvesting antennae associated with different absorption wavelengths, resulting in a broad absorption band (450–650 nm). The panchromatic excitation energy harvested by the bodipy moieties is funneled into a spin converter (C60), thus ensuring intersystem crossing and population of the triplet state. Nanosecond time‐resolved transient absorption and spin density analysis indicated that the T1 state is localized on either C60 or the antennae, depending on the T1 energy levels of the two entities. The antenna‐localized T1 state shows a longer lifetime (τT=132.9 μs) than the C60‐localized T1 state (ca. 27.4 μs). We found that the C60 triads and tetrads can be used as dual functional photocatalysts, that is, singlet oxygen (1O2) and superoxide radical anion (O2 . ?) photosensitizers. In the photooxidation of naphthol to juglone, the 1O2 photosensitizing ability of the C60 triad is a factor of 8.9 greater than the conventional triplet photosensitizers tetraphenylporphyrin and methylene blue. The C60 dyads and triads were also used as photocatalysts for O2 . ?‐mediated aerobic oxidation of aromatic boronic acids to produce phenols. The reaction times were greatly reduced compared with when [Ru(bpy)3Cl2] was used as photocatalyst. Our study of triplet photosensitizers has shown that broadband absorption in the visible spectral region and long‐lived triplet excited states can be useful for the design of new heavy‐atom‐free organic triplet photosensitizers and for the application of these triplet photosensitizers in photo‐organocatalysis.  相似文献   

3.
The purposeful modulation of the optoelectronic properties was realised on the basis of a series of the large, conjugated, phosphine oxide hosts 9,9‐bis‐{4′‐[2‐(diphenylphosphinoyl)phenoxy]biphenyl‐4‐yl}‐9H‐fluorene (DDPESPOF), 9,9‐bis‐{3′‐(diphenylphosphinoyl)‐4′‐[2‐(diphenylphosphinoyl)phenoxy]biphenyl‐4‐yl}‐9H‐fluorene (DDPEPOF), 9‐[4′‐(9‐{4′‐[2‐(diphenylphosphoryl)phenoxy]biphenyl‐4‐yl}‐9H‐fluoren‐9‐yl)biphenyl‐4‐yl]‐9H‐carbazole (DPESPOFPhCz) and 9‐[4′‐(9‐{3′‐(diphenylphosphoryl)‐4′‐[2‐(diphenylphosphoryl)phenoxy]biphenyl‐4‐yl}‐9H‐fluoren‐9‐yl)biphenyl‐4‐yl]‐9H‐carbazole (DPEPOFPhCz). The last two are quaternary with fluorenyls as linking bridges, diphenylphosphine oxide (DPPO) moieties as electron acceptors and diphenylethers and carbazolyls as two different kinds of electron donors. Owing to the fine‐organised molecular structures and the mixed indirect and multi‐insulating linkages, all of these hosts achieve the same first triplet energy levels (T1) of 2.86 eV for exothermic energy transfer to phosphorescent dopants. The first singlet energy levels (S1) and the carrier injection/transportation ability of the hosts were accurately modulated, so that DPESPOFPhCz and DPEPOFPhCz revealed extremely similar optoelectronic properties. However, the T1 state of the former is localised on fluorenyl, whereas the carbazolyl mainly contributes to the T1 state of the latter. A lower driving voltages and much higher efficiencies of the devices based on DPESPOFPhCz indicated that the chromophore‐localised T1 state can suppress the quenching effects through realising independent contributions from the different functional groups to the optoelectronic properties and the embedding and protecting effect on the T1 states by peripheral carrier transporting groups.  相似文献   

4.
Ab initio molecular orbital calculations at the G2(MP2) level have been carried out on cyclopropylsilylene C3H5SiH. Four equilibrium structures were located. Like H2Si, the ground state of C3H5SiH is singlet and the triplet is the low‐lying excited state. The singlet–triplet separation energy is 127.9 kJ/mol. The cis‐trans isomerization path of singlet cyclopropylsilylene was investigated by intrinsic reaction coordinate (IRC) calculations. The calculations show that no gauche conformers exist along the potential energy curve of the cis‐trans isomerization and the isomerization happens with a barrier of 30.1 kJ/mol. Changes (ΔH and ΔG) in thermodynamic functions, equilibrium constant K(T), and A factor and reaction rate constant k(T) in Eyring transition state theory of the cis‐trans isomerization were also calculated. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

5.
The photolysis of nitrophenols was proposed as a source of reactive radicals and NOx compounds in polluted air. The S0 singlet ground state and T1 first excited triplet state of nitrophenol were investigated to assess the energy dependence of the photofragmentation product distribution as a function of the reaction conditions, based on quantum chemical calculations at the G3SX//M06–2X/aug‐cc‐pVTZ level of theory combined with RRKM master equation calculations. On both potential energy surfaces, we find rapid isomerization with the aci‐nitrophenol isomer, as well as pathways forming NO, NO2, OH, HONO, and H‐, and O‐atoms, extending earlier studies on the T1 state and in agreement with available work on other nitroaromatics. We find that accessing the lowest photofragmentation channel from the S0 ground state requires only 268 kJ/mol of activation energy, but at a pressure of 1 atm collisional energy loss dominates such that significant fragmentation only occurs at internal energies exceeding 550 kJ/mol, making this surface unimportant for atmospheric photolysis. Intersystem crossing to the T1 triplet state leads more readily to fragmentation, with dissociation occurring at energies of ~450 kJ/mol above the singlet ground state even at 1 atm. The main product is found to be OH + nitrosophenoxy, followed by formation of hydroxyphenoxy + NO and phenyloxyl + HONO. The predictions are compared against available experimental data.  相似文献   

6.
1,1‐Dilithioethylene is a prototypical carbon–lithium compound that is not known experimentally. All low‐lying singlet and triplet structures of interest were investigated by using high‐level theoretical methods with correlation‐consistent basis sets up to pentuple ζ. The coupled cluster methods adopted included up to full triple excitations and perturbative quadruples. In contrast to earlier studies that predicted the twisted C2v triplet to be the ground state, we found a peculiar planar Cs singlet ground state in the present research. The lowest excited electronic state of 1,1‐dilithioethylene, the twisted Cs triplet, was found to lie 9.0 kcal mol?1 above the ground state by using energy extrapolation to the complete basis set limit. For the planar Cs singlet and twisted Cs triplet states of 1,1‐dilithioethylene, anharmonic vibrational frequencies were reported on the basis of second‐order vibrational perturbation theory. The remarkably low (2050 cm?1) C?H stretching fundamental (the C?H bond near the bridging lithium) of the singlet state was found to have very strong infrared intensity. These highly reliable theoretical findings may assist in the long‐sought experimental identification of 1,1‐dilithioethylene. Using natural bond orbital analysis, we found that lithium bridging structures were strongly influenced by electrostatic effects. All carbon–carbon linkages corresponded to conventional double bonds.  相似文献   

7.
The UV absorption, phosphorescence and phosphorescence‐excitation spectra of benzophenone (BP) derivatives used as organic UV absorbers have been observed in rigid solutions at 77 K. The triplet–triplet absorption spectra have been observed in acetonitrile at room temperature. The BP derivatives studied are 2,2′,4,4′‐tetrahydroxybenzophenone (BP‐2), 2‐hydroxy‐4‐methoxybenzophenone (BP‐3), 2,2′‐dihydroxy‐4,4′‐dimethoxybenzophenone (BP‐6), 5‐chloro‐2‐hydroxybenzophenone (BP‐7) and 2‐hydroxy‐4‐n‐octyloxybenzophenone (BP‐12). The energy levels and lifetimes of the lowest excited triplet (T1) states of these BP derivatives were determined from the first peak of phosphorescence. The time‐resolved near‐IR emission spectrum of singlet oxygen generated by photosensitization with BP‐7 was observed in acetonitrile at room temperature. BP‐2, BP‐3, BP‐6 and BP‐12 show photoinduced phosphorescence enhancement in ethanol at 77 K. The possible mechanism of the observed phosphorescence enhancement is discussed. The T1 states of 2‐hydroxy‐5‐methylbenzophenone, 4‐methoxybenzophenone and 2,4′‐dimethoxybenzophenone have been studied for comparison.  相似文献   

8.
The photoinduced isomerization of diaminomaleonitrile (DAMN) to diaminofumaronitrile (DAFN) was suggested to play a key role in the prebiotically plausible formation of purine nucleobases and nucleotides. In this work we analyze two competitive photoisomerization mechanisms on the basis of state‐of‐the‐art quantum‐chemical calculations. Even though it was suggested that this process might occur on the triplet potential‐energy surface, our results indicate that the singlet reaction channel should not be disregarded either. In fact, the peaked topography of the S1/S0 conical intersection suggests that the deexcitation should most likely occur on a sub‐picosecond timescale and the singlet photoisomerization mechanism might effectively compete even with a very efficient intersystem crossing. Such a scenario is further supported by the relatively small spin–orbit coupling of the S1 and T2 states in the Franck–Condon region, which does not indicate a very effective triplet bypass for this photoreaction. Therefore, we conclude that the triplet reaction channel in DAMN might not be as prominent as was previously thought.  相似文献   

9.
Variable‐temperature NMR and ESR spectroscopic studies reveal that bis(dibenzo[a,i]fluorenylidene) 1 possesses a singlet ground state, 1 (S0), while the 90° twisted triplet 1 (T1) is populated to a small extent already at room temperature. Analysis of the increasing amount of paramagnetic 1 (T1) at temperatures between 300 and 500 K yields the exchange interaction Jex/h c=3351 cm?1 and a singlet–triplet energy splitting of 9.6 kcal mol?1, which is in excellent agreement with calculations (9.3 kcal mol?1 at the UKS BP86/B3LYP/revPBE level of theory). In contrast, the zero‐field splitting parameter D is very small (calculated value ?0.018 cm?1) and unmeasurable.  相似文献   

10.
Variable‐temperature NMR and ESR spectroscopic studies reveal that bis(dibenzo[a,i]fluorenylidene) 1 possesses a singlet ground state, 1 (S0), while the 90° twisted triplet 1 (T1) is populated to a small extent already at room temperature. Analysis of the increasing amount of paramagnetic 1 (T1) at temperatures between 300 and 500 K yields the exchange interaction Jex/h c=3351 cm−1 and a singlet–triplet energy splitting of 9.6 kcal mol−1, which is in excellent agreement with calculations (9.3 kcal mol−1 at the UKS BP86/B3LYP/revPBE level of theory). In contrast, the zero‐field splitting parameter D is very small (calculated value −0.018 cm−1) and unmeasurable.  相似文献   

11.
The singlet and triplet lifetime and the quantum yield of intersystem crossing S1 → T1 for phenylosazone D-glucose (PH) were determined. A diagram of molecular electronic energy levels and the transition between them was obtained.  相似文献   

12.
A velocity imaging technique combined with (2+1) resonance‐enhanced multiphoton ionization (REMPI) is used to detect the primary Br(2P3/2) fragment in the photodissociation of o‐, m‐, and p‐dibromobenzene at 266 nm. The obtained translational energy distributions suggest that the Br fragments are produced via two dissociation channels. For o‐ and m‐dibromobenzene, the slow channel that yields an anisotropy parameter close to zero is proposed to stem from excitation of the lowest excited singlet (π,π*) state followed by predissociation along a repulsive triplet (n,σ*) state localized on the C? Br bond. The fast channel that gives rise to an anisotropy parameter of 0.53–0.73 is attributed to a bound triplet state with smaller dissociation barrier. For p‐dibromobenzene, the dissociation rates are reversed, because the barrier for the bound triplet state becomes higher than the singlet–triplet crossing energy. The fractions of translational energy release are determined to be 6–8 and 29–40 % for the slow and fast channels, respectively; the quantum yields are 0.2 and 0.8, and are insensitive to the position of the substituent. The Br fragmentation from bromobenzene and bromofluorobenzenes at the same photolyzing wavelength is also compared to understand the effect of the number of halogen atoms on the phenyl ring.  相似文献   

13.
Triplet acceptors have been developed to construct high‐performance organic solar cells (OSCs) as the long lifetime and diffusion range of triplet excitons may dissociate into free charges instead of net recombination when the energy levels of the lowest triplet state (T1) are close to those of charge‐transfer states (3CT). The current triplet acceptors were designed by introducing heavy atoms to enhance the intersystem crossing, limiting their applications. Herein, two twisted acceptors without heavy atoms, analogues of Y6, constructed with large π‐conjugated core and D‐A structure, were confirmed to be triplet materials, leading to high‐performance OSCs. The mechanism of triplet excitons were investigated to show that the twisted and D‐A structures result in large spin–orbit coupling (SOC) and small energy gap between the singlet and triplet states, and thus efficient intersystem crossing. Moreover, the energy level of T1 is close to 3CT, facilitating the split of triplet exciton to free charges.  相似文献   

14.
Chichibabin's and Müller's hydrocarbons are classical open‐shell singlet diradicaloids but they are highly reactive. Herein we report the successful synthesis of their respective stable analogues, OxR‐2 and OxR‐3 , based on the newly developed oxindolyl radical. X‐ray crystallographic analysis on OxR‐2 reveals a planar quinoidal backbone similar to Chichibabin's hydrocarbon, in accordance with its small diradical character (y0=11.1 %) and large singlet–triplet gap (ΔES‐T=−10.8 kcal mol−1). Variable‐temperature NMR studies on OxR‐2 disclose a slow cis/trans isomerization process in solution through a diradical transition state, with a moderate energy barrier (ΔG298K=15–16 kcal mol−1). OxR‐3 exhibits a much larger diradical character (y0=80.6 %) and a smaller singlet–triplet gap (ΔES‐T=−3.5 kcal mol−1), and thus can be easily populated to paramagnetic triplet diradical. Our studies provide a new type of stable carbon‐centered monoradical and diradicaloid.  相似文献   

15.
Extensive time-dependent DFT (TDDFT) and DFT/multireference configuration interaction (MRCI) calculations are performed on the singlet and triplet excited states of free-base porphyrin, with emphasis on intersystem crossing processes. The equilibrium geometries, as well as the vertical and adiabatic excitation energies of the lowest singlet and triplet excited states are determined. Single and double proton-transfer reactions in the first excited singlet state are explored. Harmonic vibrational frequencies are calculated at the equilibrium geometries of the ground state and of the lowest singlet and triplet excited states. Furthermore, spin–orbit coupling matrix elements of the lowest singlet and triplet states and their numerical derivatives with respect to nuclear displacements are computed. It is shown that opening of an unprotonated pyrrole ring as well as excited-state single and double proton transfer inside the porphyrin cavity lead to crossings of the potential energy curves of the lowest singlet and triplet excited states. It is also found that displacements along out-of-plane normal modes of the first excited singlet state cause a significant increase of the 2|Hso|S1>, 1|Hso|S1>, and 1|Hso|S0> spin–orbit coupling matrix elements. These phenomena lead to efficient radiationless deactivation of the lowest excited states of free-base porphyrin via intercombination conversion. In particular, the S1→T1 population transfer is found to proceed at a rate of ≈107 s−1 in the isolated molecule.  相似文献   

16.
The excited states of UV absorber, ethylhexyl methoxycrylene (EHMCR) have been studied through measurements of UV absorption, fluorescence, phosphorescence and electron paramagnetic resonance (EPR) spectra in ethanol. The energy levels of the lowest excited singlet (S1) and triplet (T1) states of EHMCR were determined. The energy levels of the S1 and T1 states of EHMCR are much lower than those of photolabile 4‐tert‐butyl‐4′‐methoxydibenzoylmethane. The energy levels of the S1 and T1 states of EHMCR are lower than those of octyl methoxycinnamate. The weak phosphorescence and EPR Bmin signals were observed and the lifetime was estimated to be 93 ms. These facts suggest that the significant proportion of the S1 molecules undergoes intersystem crossing to the T1 state, and the deactivation process from the T1 state is predominantly radiationless. The photostability of EHMCR arises from the 3ππ* character in the T1 state. The zero‐field splitting (ZFS) parameter in the T1 state is D** = 0.113 cm?1.  相似文献   

17.
《中国化学》2017,35(10):1559-1568
The donor‐π‐conjugated‐acceptor (D‐π‐A) structure is an important design for the luminescent materials because of its diversity in the selections of donor, π‐bridge and acceptor groups. Herein, we demonstrate two examples of D‐π‐A structures capable to finely modulate the excited state properties and arrangement of energy levels, TPA‐AN‐BP and CZP‐AN‐BP , which possess the same acceptor and π‐bridge but different donor. The investigation of their photophysical properties and DFT calculation revealed that the D‐π‐A structure with proper donor, π‐bridge and acceptor can result in separation of frontier molecular orbitals on the corresponding donor and acceptor with an obvious overlap on the π‐bridge, resulting in a hybridized local and charge‐transfer (HLCT ) excited state with high photoluminescent (PL ) efficiencies. Meanwhile, their singlet and triplet states are arranged on corresponding moieties with large energy gap between T2 and T1 , and a small energy gap between S1 and T2 , which favor the reverse intersystem crossing (RISC ) from high‐lying triplet levels to singlet levels. As a result, the sky‐blue emission non‐doped OLED based on the TPA‐AN‐BP reached maximum external quantum efficiency (EQE ) of 4.39% and a high exciton utilization efficiency (EUE ) of 77%. This study demonstrates a new strategy to construct highly efficient OLED materials.  相似文献   

18.
The synthesis of a bithiophene‐bridged 34π conjugated aromatic expanded porphycene 1 and a cyclopentabithiophene bridged 32π conjugated anti‐aromatic expanded porphycene 2 by a McMurry coupling strategy is presented. Magnetic measurements and theoretical calculations reveal that both 1 and 2 exhibit an open‐shell singlet ground state with significant radical character (y0=0.63 for 1 ; y0=0.68, y1=0.18 for 2 ; y0: diradical character, y1: tetraradical character) and a small singlet–triplet energy gap (ΔES‐T=?3.25 kcal mol?1 for 1 and ΔES‐T=?0.92 kcal mol?1 for 2 ). Despite the open‐shell radical character, both compounds display exceptional stability under ambient air and light conditions owing to effective delocalization of unpaired electrons in the extended cyclic π‐conjugation pathway.  相似文献   

19.
Photosynthetic energy conversion competes with the formation of chlorophyll triplet states and the generation of reactive oxygen species. These may, especially under high light stress, damage the photosynthetic apparatus. Many sophisticated photoprotective mechanisms have evolved to secure a harmless flow of excitation energy through the photosynthetic complexes. Time‐resolved laser‐induced optoacoustic spectroscopy was used to compare the properties of the T1 states of pheophytin a and its metallocomplexes. The lowest quantum yield of the T1 state is always observed in the Mg complex, which also shows the least efficient energy transfer to O2. Axial coordination to the central Mg further lowers the yield of both T1 and singlet oxygen. These results reveal the existence of intrinsic photoprotective mechanisms in chlorophylls, embedded in their molecular design, which substantially suppress the formation of triplet states and the efficiency of energy transfer to O2, each by 20–25 %. Such intrinsic photoprotective effects must have created a large evolutionary advantage for the Mg complexes during their evolution as the principal photoactive cofactors of photosynthetic proteins.  相似文献   

20.
The main photophysical properties of a series of recently synthetized 1,2‐ and 1,3‐squaraines, including absorption electronic spectra, singlet‐triplet energy gaps, and spin‐orbit matrix elements, have been investigated by means of density functional theory (DFT) and time‐dependent DFT approaches. A benchmark of three exchange‐correlation functionals has been performed in six different solvent environments. The investigated 1,2 squaraines have been found to possess two excited triplet states (T1 and T2) that lie below the energy of the excited singlet one (S1). The radiationless intersystem spin crossing efficiency is thus enhanced in both the studied systems and both the transitions could contribute to the excited singlet oxygen production. Moreover, they have a singlet‐triplet energy gap higher than that required to generate the cytotoxic singlet oxygen species. According to our data, these compounds could be used in photodynamic therapy applications that do not require high tissue penetration. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号