首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
For a graph G and k a real number, we consider the sum of the kth powers of the degrees of the vertices of G. We present some general bounds on this sum for various values of k.  相似文献   

2.
An L(2,1)-labeling of a graph G is an assignment of nonnegative integers to the vertices of G so that adjacent vertices get labels at least distance two apart and vertices at distance two get distinct labels. A hole is an unused integer within the range of integers used by the labeling. The lambda number of a graph G, denoted λ(G), is the minimum span taken over all L(2,1)-labelings of G. The hole index of a graph G, denoted ρ(G), is the minimum number of holes taken over all L(2,1)-labelings with span exactly λ(G). Georges and Mauro [On the structure of graphs with non-surjective L(2,1)-labelings, SIAM J. Discrete Math. 19 (2005) 208-223] conjectured that if G is an r-regular graph and ρ(G)?1, then ρ(G) must divide r. We show that this conjecture does not hold by providing an infinite number of r-regular graphs G such that ρ(G) and r are relatively prime integers.  相似文献   

3.
Melody Chan 《Discrete Mathematics》2008,308(11):2301-2306
Consider a configuration of pebbles distributed on the vertices of a connected graph of order n. A pebbling step consists of removing two pebbles from a given vertex and placing one pebble on an adjacent vertex. A distribution of pebbles on a graph is called solvable if it is possible to place a pebble on any given vertex using a sequence of pebbling steps. The pebbling number of a graph, denoted f(G), is the minimal number of pebbles such that every configuration of f(G) pebbles on G is solvable. We derive several general upper bounds on the pebbling number, improving previous results.  相似文献   

4.
Let G be a graph with n vertices and μ(G) be the largest eigenvalue of the adjacency matrix of G. We study how large μ(G) can be when G does not contain cycles and paths of specified order. In particular, we determine the maximum spectral radius of graphs without paths of given length, and give tight bounds on the spectral radius of graphs without given even cycles. We also raise a number of open problems.  相似文献   

5.
Let G be a graph on n vertices, and let λ1,λ2,…,λn be its eigenvalues. The Estrada index of G is a recently introduced graph invariant, defined as . We establish lower and upper bounds for EE in terms of the number of vertices and number of edges. Also some inequalities between EE and the energy of G are obtained.  相似文献   

6.
The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well-known domination problem in graphs. In 1998, Haynes et al. considered the graph theoretical representation of this problem as a variation of the domination problem. They defined a set S to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S (following a set of rules for power system monitoring). The power domination number γP(G) of a graph G is the minimum cardinality of a power dominating set of G. In this paper, we present upper bounds on the power domination number for a connected graph with at least three vertices and a connected claw-free cubic graph in terms of their order. The extremal graphs attaining the upper bounds are also characterized.  相似文献   

7.
A function f:V(G)→{-1,0,1} defined on the vertices of a graph G is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. An MTDF f is minimal if there does not exist an MTDF g:V(G)→{-1,0,1}, fg, for which g(v)?f(v) for every vV(G). The weight of an MTDF is the sum of its function values over all vertices. The minus total domination number of G is the minimum weight of an MTDF on G, while the upper minus domination number of G is the maximum weight of a minimal MTDF on G. In this paper we present upper bounds on the upper minus total domination number of a cubic graph and a 4-regular graph and characterize the regular graphs attaining these upper bounds.  相似文献   

8.
A dominating set in a graph G is a set S of vertices of G such that every vertex not in S is adjacent to a vertex of S. The domination number of G is the minimum cardinality of a dominating set of G. For a positive integer b, a set S of vertices in a graph G is a b-disjunctive dominating set in G if every vertex v not in S is adjacent to a vertex of S or has at least b vertices in S at distance 2 from it in G. The b-disjunctive domination number of G is the minimum cardinality of a b-disjunctive dominating set. In this paper, we continue the study of disjunctive domination in graphs. We present properties of b-disjunctive dominating sets in a graph. A characterization of minimal b-disjunctive dominating sets is given. We obtain bounds on the ratio of the domination number and the b-disjunctive domination number for various families of graphs, including regular graphs and trees.  相似文献   

9.
Let G be a simple graph with least eigenvalue λ and let S be a set of vertices in G which induce a subgraph with mean degree k. We use a quadratic programming technique in conjunction with the main angles of G to establish an upper bound of the form |S|?inf{(k+t)qG(t):t>-λ} where qG is a rational function determined by the spectra of G and its complement. In the case k=0 we obtain improved bounds for the independence number of various benchmark graphs.  相似文献   

10.
A Steiner tree for a set S of vertices in a connected graph G is a connected subgraph of G with a smallest number of edges that contains S. The Steiner interval I(S) of S is the union of all the vertices of G that belong to some Steiner tree for S. If S={u,v}, then I(S)=I[u,v] is called the interval between u and v and consists of all vertices that lie on some shortest u-v path in G. The smallest cardinality of a set S of vertices such that ?u,vSI[u,v]=V(G) is called the geodetic number and is denoted by g(G). The smallest cardinality of a set S of vertices of G such that I(S)=V(G) is called the Steiner geodetic number of G and is denoted by sg(G). We show that for distance-hereditary graphs g(G)?sg(G) but that g(G)/sg(G) can be arbitrarily large if G is not distance hereditary. An efficient algorithm for finding the Steiner interval for a set of vertices in a distance-hereditary graph is described and it is shown how contour vertices can be used in developing an efficient algorithm for finding the Steiner geodetic number of a distance-hereditary graph.  相似文献   

11.
Motivated by a problem on message routing in communication networks, Graham and Pollak proposed a scheme for addressing the vertices of a graph G by N-tuples of three symbols in such a way that distances between vertices may readily be determined from their addresses. They observed that N?h(D), the maximum of the number of positive and the number of negative eigenvalues of the distance matrix D of G. A result of Gregory, Shader and Watts yields a necessary condition for equality to occur. As an illustration, we show that N>h(D)=5 for all addressings of the Petersen graph and then give an optimal addressing by 6-tuples.  相似文献   

12.
The degree set of a finite simple graph G is the set of distinct degrees of vertices of G. A theorem of Kapoor et al. [Degree sets for graphs, Fund. Math. 95 (1977) 189-194] asserts that the least order of a graph with a given degree set D is 1+max(D). We look at the analogous problem concerning the least size of a graph with a given degree set D. We determine the least size for the sets D when (i) |D|?3; (ii) D={1,2,…,n}; and (iii) every element in D is at least |D|. In addition, we give sharp upper and lower bounds in all cases.  相似文献   

13.
We investigate the expected value of various graph parameters associated with the minimum rank of a graph, including minimum rank/maximum nullity and related Colin de Verdière-type parameters. Let G(v,p) denote the usual Erd?s-Rényi random graph on v vertices with edge probability p. We obtain bounds for the expected value of the random variables mr(G(v,p)), M(G(v,p)), ν(G(v,p)) and ξ(G(v,p)), which yield bounds on the average values of these parameters over all labeled graphs of order v.  相似文献   

14.
Linda Eroh 《Discrete Mathematics》2008,308(18):4212-4220
Let G be a connected graph and SV(G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I(S) is the union of all vertices that belong to some Steiner tree for S. If S={u,v}, then I(S) is the interval I[u,v] between u and v. A connected graph G is 3-Steiner distance hereditary (3-SDH) if, for every connected induced subgraph H of order at least 3 and every set S of three vertices of H, dH(S)=dG(S). The eccentricity of a vertex v in a connected graph G is defined as e(v)=max{d(v,x)|xV(G)}. A vertex v in a graph G is a contour vertex if for every vertex u adjacent with v, e(u)?e(v). The closure of a set S of vertices, denoted by I[S], is defined to be the union of intervals between pairs of vertices of S taken over all pairs of vertices in S. A set of vertices of a graph G is a geodetic set if its closure is the vertex set of G. The smallest cardinality of a geodetic set of G is called the geodetic number of G and is denoted by g(G). A set S of vertices of a connected graph G is a Steiner geodetic set for G if I(S)=V(G). The smallest cardinality of a Steiner geodetic set of G is called the Steiner geodetic number of G and is denoted by sg(G). We show that the contour vertices of 3-SDH and HHD-free graphs are geodetic sets. For 3-SDH graphs we also show that g(G)?sg(G). An efficient algorithm for finding Steiner intervals in 3-SDH graphs is developed.  相似文献   

15.
Let G be a connected (di)graph. A vertex w is said to strongly resolve a pair u,v of vertices of G if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set W of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of W. The smallest cardinality of a strong resolving set for G is called the strong dimension of G. It is shown that the problem of finding the strong dimension of a connected graph can be transformed to the problem of finding the vertex covering number of a graph. Moreover, it is shown that computing this invariant is NP-hard. Related invariants for directed graphs are defined and studied.  相似文献   

16.
A plane graph is called symmetric if it is invariant under the reflection across some straight line (called symmetry axis). Let G be a symmetric plane graph. We prove that if there is no edge in G intersected by its symmetry axis then the number of spanning trees of G can be expressed in terms of the product of the number of spanning trees of two smaller graphs, each of which has about half the number of vertices of G.  相似文献   

17.
In this paper, we characterize the extremal graph having the maximal Laplacian spectral radius among the connected bipartite graphs with n vertices and k cut vertices, and describe the extremal graph having the minimal least eigenvalue of the adjacency matrices of all the connected graphs with n vertices and k cut edges. We also present lower bounds on the least eigenvalue in terms of the number of cut vertices or cut edges and upper bounds on the Laplacian spectral radius in terms of the number of cut vertices.  相似文献   

18.
A graph G is 2-stratified if its vertex set is partitioned into two classes (each of which is a stratum or a color class.) We color the vertices in one color class red and the other color class blue. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at v. The F-domination number of a graph G is the minimum number of red vertices of G in a red-blue coloring of the vertices of G such that every blue vertex v of G belongs to a copy of F rooted at v. In this paper we investigate the F-domination number when (i) F is a 2-stratified path P3 on three vertices rooted at a blue vertex which is a vertex of degree 1 in the P3 and is adjacent to a blue vertex and with the remaining vertex colored red, and (ii) F is a 2-stratified K3 rooted at a blue vertex and with exactly one red vertex.  相似文献   

19.
For a given graph G its Szeged weighting is defined by w(e)=nu(e)nv(e), where e=uv is an edge of G,nu(e) is the number of vertices of G closer to u than to v, and nv(e) is defined analogously. The adjacency matrix of a graph weighted in this way is called its Szeged matrix. In this paper we determine the spectra of Szeged matrices and their Laplacians for several families of graphs. We also present sharp upper and lower bounds on the eigenvalues of Szeged matrices of graphs.  相似文献   

20.
A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The matching number is the maximum cardinality of a matching of G, while the total domination number of G is the minimum cardinality of a total dominating set of G. In this paper, we investigate the relationships between the matching and total domination number of a graph. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number, and we show that every k-regular graph with k?3 has total domination number at most its matching number. In general, we show that no minimum degree is sufficient to guarantee that the matching number and total domination number are comparable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号