首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Noncovalent interactions govern how molecules communicate. Mass spectrometry is an important and versatile tool for the analysis of noncovalent complexes (NCX). Electrospray mass spectrometry (ESI-MS) is the most widely used MS technique for the study of NCXs because of its softer ionization and easy compatibility with the solution phase of NCX mixtures. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has also been used to study NCXs. However, successful analysis depends upon several experimental factors, such as matrix selection, solution pH, and instrumental parameters. In this study, we employ MALDI imaging mass spectrometry to investigate the location and formation of NCXs, involving both peptides and proteins, in a MALDI sample spot.
Figure
?  相似文献   

2.
Human tumor xenografts in immunodeficient mice are a very popular model to study the development of cancer and to test new drug candidates. Among the parameters analyzed are the variations in the lipid composition, as they are good indicators of changes in the cellular metabolism. Here, we present a study on the distribution of lipids in xenografts of NCI-H1975 human lung cancer cells, using MALDI imaging mass spectrometry and UHPLC-ESI-QTOF. The identification of lipids directly from the tissue by MALDI was aided by the comparison with identification using ESI ionization in lipid extracts from the same xenografts. Lipids belonging to PCs, PIs, SMs, DAG, TAG, PS, PA, and PG classes were identified and their distribution over the xenograft was determined. Three areas were identified in the xenograft, corresponding to cells in different metabolic stages and to a layer of adipose tissue that covers the xenograft.
FIGURE
?  相似文献   

3.
Measuring average quantities in complex mixtures can be challenging for mass spectrometry, as it requires ionization and detection with nearly equivalent cross-section for all components, minimal matrix effect, and suppressed signal from fragments and aggregates. Fragments and aggregates are particularly troublesome for complex mixtures, where they can be incorrectly assigned as parent ions. Here we study fragmentation and aggregation in six aromatic model compounds as well as petroleum asphaltenes (a naturally occurring complex mixture) using two laser-based ionization techniques: surface assisted laser desorption ionization (SALDI), in which a single laser desorbs and ionizes solid analytes; and laser ionization laser desorption mass spectrometry (L2MS), in which desorption and ionization are separated spatially and temporally with independent lasers. Model compounds studied include molecules commonly used as matrices in single laser ionization techniques such as matrix assisted laser desorption ionization (MALDI). We find significant fragmentation and aggregation in SALDI, such that individual fragment and aggregate peaks are typically more intense than the parent peak. These fragment and aggregate peaks are expected in MALDI experiments employing these compounds as matrices. On the other hand, we observe no aggregation and only minimal fragmentation in L2MS. These results highlight some advantages of L2MS for analysis of complex mixtures such as asphaltenes.
Figure
?  相似文献   

4.
Selective synthesis of C60 bisadducts has been achieved by using the Prato 1,3-dipolar cycloaddition of tethered bis-azomethine ylides. New bis(benzaldehydes) 1-4 tethered by a rigid linker were prepared and used to direct the second cycloaddition of azomethine ylide to C60. Equatorial, trans-4, trans-3, trans-2, and trans-1 bisadducts have been selectively prepared with this approach. However, the introduction of chiral centers in the pyrrolidine rings in the course of the reaction complicated the chemistry, as a number of stereoisomers theoretically could be formed. The structure determination of the isomeric bisadducts was made based on spectroscopic data and theoretical calculations. To our best knowledge, this represents the first example of a systematic study on tether-directed selective synthesis of C60 fulleropyrrolidine bisadducts.  相似文献   

5.
We report gas phase studies on NCO fragment formation from the nucleobases thymine and uracil and their N-site methylated derivatives upon dissociative electron attachment (DEA) and through electron transfer in potassium collisions. For comparison, the NCO production in metastable decay of the nucleobases after deprotonation in matrix assisted laser desorption/ionization (MALDI) is also reported. We show that the delayed fragmentation of the dehydrogenated closed-shell anion into NCO upon DEA proceeds few microseconds after the electron attachment process, indicating a rather slow unimolecular decomposition. Utilizing partially methylated thymine, we demonstrate that the remarkable site selectivity of the initial hydrogen loss as a function of the electron energy is preserved in the prompt as well as the metastable NCO formation in DEA. Site selectivity in the NCO yield is also pronounced after deprotonation in MALDI, though distinctly different from that observed in DEA. This is discussed in terms of the different electronic states subjected to metastable decay in these experiments. In potassium collisions with 1- and 3-methylthymine and 1- and 3-methyluracil, the dominant fragment is the NCO ion and the branching ratios as a function of the collision energy show evidence of extraordinary site-selectivity in the reactions yielding its formation.
Graphical abstract
?  相似文献   

6.
Analyte-matrix adducts are normally absent under typical matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) conditions. Interestingly, though, in the analysis of several types of organic compounds synthesized in our laboratory, analyte-matrix adduct ion peaks were always recorded when common MALDI matrices such as 4-hydroxy-α-cyanocinnamic acid (CHCA) were used. These compounds are mainly those with a benzene-1,3,5-tricarboxamide (BTA) or urea moiety, which are important building blocks to make new functional supramolecular materials. The possible mechanism of the adduct formation was investigated. A shared feature of the compounds studied is that they can form intermolecular hydrogen bonding with matrices like CHCA. The intermolecular hydrogen bonding will make the association between analyte ions and matrix molecules stronger. As a result, the analyte ions and matrix molecules in MALDI clusters will become more difficult to be separated from each other. Furthermore, it was found that analyte ions were mainly adducted with matrix salts, which is probably due to the much lower volatility of the salts compared with that of their corresponding matrix acids. It seems that the analyte-matrix adduct formation for our compounds are caused by the incomplete evaporation of matrix molecules from the MALDI clusters because of the combined effects of enhanced intermolecular interaction between analyte-matrix and of the low volatility of matrix salts. Based on these findings, strategies to suppress the analyte-matrix adduction are briefly discussed. In return, the positive results of using these strategies support the proposed mechanism of the analyte-matrix adduct formation.
?  相似文献   

7.
Toxic organophosphorus compounds (e.g., pesticides and nerve agents) are known to react with nucleophilic side chains of different amino acids (phosphylation), thus forming adducts with endogenous proteins. Most often binding to serine, tyrosine, or threonine residues is described as being of relevance for toxicological effects (e.g., acetylcholinesterase and neuropathy target esterase) or as biomarkers for post-exposure analysis (verification, e.g., albumin and butyrylcholinesterase). Accordingly, identification of novel protein targets might be beneficial for a better understanding of the toxicology of these compounds, revealing new bioanalytical verification tools, and improving knowledge on chemical reactivity. In the present study, we investigated the reaction of ubiquitin (Ub) with the V-type nerve agents Chinese VX, Russian VX, and VX in vitro. Ub is a ubiquitous protein with a mass of 8564.8 Da present in the extra- and intracellular space that plays an important physiological role in several essential processes (e.g., proteasomal degradation, DNA repair, protein turnover, and endocytosis). Reaction products were analyzed by matrix-assisted laser desorption/ionization-time-of-flight- mass spectrometry (MALDI-TOF MS) and μ-high-performance liquid chromatography online coupled to UV-detection and electrospray ionization MS (μHPLC-UV/ESI MS). Our results originally document that a complex mixture of at least mono-, di, and triphosphonylated Ub adducts was produced. Surprisingly, peptide mass fingerprint analysis in combination with MALDI and ESI MS/MS revealed that phosphonylation occurred with high selectivity in at least 6 of 7 surface-exposed lysine residues that are essential for the biological function of Ub. These reaction products were found not to age. In addition, we herein report for the first time that phosphonylation induced intramolecular cyclization by formation of an isopeptide bond between the ε-amino group of a formerly phosphonylated lysine and the side chain of an adjacent acidic glutamic acid residue.
Lysine residues in ubiquitin are phosphonylated by nerve agents and undergo intramolecular cyclization  相似文献   

8.
The key step in high quality microbial matrix-assisted laser desorption/ionization mass spectrometry imaging (microbial MALDI MSI) is the fabrication of a homogeneous matrix coating showing a fine-grained morphology. This application note addresses a novel method to apply solid MALDI matrices onto microbial cultures grown on thin agar media. A suspension of a mixture of 2,5-DHB and α-CHCA is sprayed onto the agar sample surface to form highly homogeneous matrix coatings. As a result, the signal intensities of metabolites secreted by the fungus Aspergillus fumigatus were found to be clearly enhanced.
Figure
?  相似文献   

9.
With the development of special ion conversion dynode (ICD) detectors for high-mass matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), the mass-to-charge ratio is no longer a limiting factor. Although these detectors have been successfully used in the past, there is lack of understanding of the basic processes in the detector. We present a systematic study to investigate the performance of such an ICD detector and separate the contributions of the MALDI process from the ones of the ion-to-secondary ion and the secondary ion-to-electron conversions. The performance was evaluated as a function of the voltages applied to the conversion dynodes and the sample amount utilized, and we found that the detector reflects the MALDI process correctly: limitations such as sensitivity or deviations from the expected signal intensity ratios originate from the MALDI process itself and not from the detector.
Graphical abstract
?  相似文献   

10.
A simple approach for synthesis of palladium and silver nanostructures with readily adjustable morphologies was developed using galvanic electrochemical deposition, for application to surface-assisted laser desorption/ionization (SALDI) of small biological molecules. A range of fatty acids, triglycerides, carbohydrates, and antibiotics were investigated to assess the performance of the new materials. Intense analyte cations were generated from the galvanic surfaces upon UV laser irradiation such as potassium adducts for a film thickness <100 nm (originating from impurities of the electrolyte solution) and Pd and Ag cluster ions for films with a thickness >120 nm. Possible laser desorption/ionization mechanisms of these galvanic structures are discussed. The films exhibited self-organizing abilities and adjustable morphologies by changing electrochemical parameters. They did not require any stabilizing agents and were inexpensive and very easy to produce. SALDI analysis showed that the materials were stable under ambient conditions and analytical results with excellent measurement reproducibility and detection sensitivity similar to MALDI were obtained. Finally, we applied the galvanic surfaces to fast screening of natural oils with minimum sample preparation.
Figure
?  相似文献   

11.
A series of studies comparing the performance of alternating current electrospray ionization (AC ESI) mass spectrometry (MS) and direct current electrospray ionization (DC ESI) MS have been conducted, exploring the absolute signal intensity and signal-to-background ratios produced by both methods using caffeine and a model peptide as targets. Because the high-voltage AC signal was more susceptible to generating gas discharges, the operating voltage range of AC ESI was significantly smaller than that for DC ESI, such that the absolute signal intensities produced by DC ESI at peak voltages were one to two orders of magnitude greater than those for AC ESI. Using an electronegative nebulizing gas, sulfur hexafluoride (SF6), instead of nitrogen (N2) increased the operating range of AC ESI by ~50 %, but did not appreciably improve signal intensities. While DC ESI generated far greater signal intensities, both ionization methods produced comparable signal-to-background noise, with AC ESI spectra appearing qualitatively cleaner. A quantitative calibration analysis was performed for two analytes, caffeine and the peptide MRFA. AC ESI utilizing SF6 outperforms all other techniques for the detection of MRFA, producing chromatographic limits of detection nearly one order of magnitude lower than that of DC ESI utilizing N2, and one-half that of DC ESI utilizing SF6. However, DC ESI outperforms AC ESI for the analysis of caffeine, indicating that improvements in spectral quality may benefit certain compounds or classes of compounds, on an individual basis.
Fig. a
?  相似文献   

12.
Many diseases such as arthritis or atherosclerosis are accompanied by inflammatory processes. Inflammation is characterized by the infiltration of cells such as neutrophilic granulocytes and (a) the release of phospholipases [particularly phospholipase A2 (PLA2)] and (b) the generation of reactive oxygen as well as nitrogen species (ROS and RNS). While PLA2 leads to defined lyso products (lacking one acyl residue), lipid oxidation is characterized by much more complex product patterns, including lipid peroxides, aldehydes (by double bond cleavage), and many others. Nevertheless, oxidation processes are highly important under in vivo conditions because molecules with regulatory functions are generated by the oxidation of lipids and/or free fatty acids. Therefore, lipid oxidation products as well as lysolipids are increasingly assumed to represent important disease (bio)markers. Consequently, there is also increasing interest in methods to characterize these products qualitatively and quantitatively. Mass spectrometry (MS) seems to be the method of choice to study (phospho)lipids changed under inflammatory conditions: nowadays, soft ionization MS methods are regularly used to study oxidative lipid modifications because of their high sensitivities and the tremendous mass resolutions that are achievable by using modern mass spectrometers. However, experimental care is required to be able to detect all relevant products. Although electrospray ionization (ESI) MS is so far most popular, applications of matrix-assisted laser desorption and ionization (MALDI) MS are continuously increasing. This review aims to summarize the so far available data on MS analyses of oxidized lipids as well as lysolipids. In addition to model systems, special attention will be paid to the monitoring of oxidized lipids and lysolipids under in vivo conditions. It is the aim of this review to provide a critical survey of the advantages and drawbacks of the different MS methods, with the focus on MALDI and ESI.
Figure
Scheme of mass spectrometric analysis to study oxidation and enzyme-modified phospholipids changed under inflammatory conditions  相似文献   

13.
Modern glycan analysis is primarily based on mass spectrometry, where instruments based on electrospray or matrix-assisted laser desorption ionization are currently the most frequently used. In the present study, electrospray ionization (ESI) coupled with a high-resolution Fourier transform mass spectrometer (LTQ Orbitrap) and matrix-assisted laser desorption/ionization (MALDI) coupled with a time-of-flight (TOF/TOF) detector were used to analyze two N-glycan standards with intact free reducing ends (disialo biantennary and asialo triantennary) and representative PA-labeled human serum N-glycan structures isolated by hydrophilic interaction anion-exchange chromatography (HIAX), confirmed by 1H NMR analysis and consequently compared with the ProteinScape Glycome database. Different combinations of ion sources with fragmentation devices results in various fragmentation patterns and adducts. Also, the effect of sample derivatization on the acquired signals is discussed. Compared to the MALDI technique, free glycans did not lose labile sialic acids easily in the ESI source. On the other hand, fluorescent PA-labeling leads to improved core fragmentation and signal intensities; linkage-specific ethyl esterification leads to reduced adduct and fragment formation and enhanced stability of sialic acids in the MALDI ion source. Thereby, both methods have their advantages and disadvantages in terms of detection, fragmentation and robustness.  相似文献   

14.
The combination of ultrahigh-resolution mass spectrometry imaging (UHRMSI) and ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS/MS) was used for the identification and the spatial localization of atorvastatin (AT) and its metabolites in rat tissues. Ultrahigh-resolution and high mass accuracy measurements on a matrix-assisted laser desorption/ionization (MALDI)-Orbitrap mass spectrometer allowed better detection of desired analytes in the background of matrix and endogenous compounds. Tandem mass spectra were also used to confirm the identification of detected metabolites in complex matrices. The optimization of sample preparation before imaging experiments included the tissue cryogenic sectioning (thickness 20 μm), the transfer to stainless steel or glass slide, and the selection of suitable matrix and its homogenous deposition on the tissue slice. Thirteen matrices typically used for small molecule analysis, e.g., 2,5-dihydroxybenzoic acid (DHB), 1,5-diaminonaphthalene (DAN), 9-aminoacridine (AA), etc., were investigated for the studied drug and its metabolite detection efficiency in both polarity modes. Particular matrices were scored based on the strength of extracted ion current (EIC), relative ratio of AT molecular adducts, and fragment ions. The matrix deposition on the tissue for the most suitable matrices was done by sublimation to obtain the small crystal size and to avoid local variations in the ionization efficiency. UHPLC/MS profiling of drug metabolites in adjacent tissue slices with the previously optimized extraction was performed in parallel to mass spectrometry imaging (MSI) measurements to obtain more detailed information on metabolites in addition to the spatial information from MSI. The quantitation of atorvastatin in rat liver, serum, and feces was also performed.
Figure
?  相似文献   

15.
We report the development of a new AP visible-wavelength MALDI-ion trap-MS instrument with significantly improved performance over our previously reported system (Int. J. Mass Spectrom. 315, 66–73 (2012)). A Nd:YAG pulsed laser emitting light at 532 nm was used to desorb and ionize oligosaccharides and peptides in transmission geometry through a glass slide. Limits of detection (LODs) achieved in MS mode correspond to picomole quantities of oligosaccharides and femtomole quantities of peptides. Tandem MS (MS/MS) experiments enabled identification of enzymatically digested proteins and oligosaccharides by comparison of MS/MS spectra with data found in protein and glycan databases. Moreover, the softness of ionization, LODs, and fragmentation spectra of biomolecules by AP visible-wavelength MALDI-MS were compared to those obtained by AP UV MALDI-MS using a Nd:YAG laser emitting light at 355 nm. AP visible-wavelength MALDI appears to be a softer ionization technique then AP UV MALDI for the analysis of sulfated peptides, while visible-wavelength MALDI-MS, MS/MS, and MS/MS/MS spectra of other biomolecules analyzed were mostly similar to those obtained by AP UV MALDI-MS. Therefore, the methodology presented will be useful for MS and MSn analyses of biomolecules at atmospheric pressure. Additionally, the AP visible-wavelength MALDI developed can be readily used for soft ionization of analytes on various mass spectrometers.
Figure
?  相似文献   

16.
In a previous study (J. Mass Spectrom. 48, 299–305, 2013), we observed that the abundance of each ion in a matrix-assisted laser desorption ionization (MALDI) spectrum looked thermally determined. To find out the explanation for the phenomenon, we estimated the ionization efficiency and the reaction quotient (QA) for the autoprotolysis of matrix, M + M → [M + H]+ + [M ? H]?, from the temperature-controlled laser desorption ionization spectra of α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB). We also evaluated the equilibrium constants (KA) for the autoprotolysis at various temperatures by quantum chemical calculation. Primary ion formation via various thermal models followed by autoprotolysis-recombination was compatible with the observations. The upper limit of the effective temperature of the plume where autoprotolysis-recombination occurs was estimated by equating QA with the calculated equilibrium constant.
Figure
?  相似文献   

17.
A surface-assisted laser desorption/ionization (SALDI) source is coupled to the Orbitrap mass analyzer; the instrumental approach is tested for the analysis of rhenium (Re) and osmium (Os) complexes with 8-mercaptoquinoline. Silicon (Si) material obtained by laser treatment of monocrystalline Si is used as SALDI substrate. All studied complexes are detected as radical cations, with no protonated molecules. The comparison of SALDI, matrix-assisted laser desorption/ionization (MALDI), and direct laser desorption/ionization (LDI) on metal plates in the same instrumental setup demonstrated that the detection of the studied complexes using SALDI provides the highest sensitivity. The ability to analyze samples rapidly, high purity of spectra, and good analytical parameters make SALDI coupled to the Orbitrap mass analyzer a potentially powerful tool for the detection of Re and Os complexes and related organic, UV-absorbing compounds.
Figure
?  相似文献   

18.
Electron ionization mass spectrometry and density functional theory (DFT) calculations have been used to study the fragmentation of diastereoisomers of protected 1,2-diaminoalkylphosphonic acids. The loss of a diethoxyphosphoryl group and the elimination of diethyl phosphonate were found to be competitive fragmentation processes, which can be used to differentiate both stereoisomers. Selective deuterated analogs and product- and precursor-ion mass spectra allowed the elucidation of the fragmentation mechanisms. The structures of the transition states and product ions were optimized using the density functional theory (DFT), and free energy calculations confirmed the observed differences in the formation and relative intensities of specific fragment ions.
Figure
?  相似文献   

19.
The mechanisms whereby protein ions are liberated from charged droplets during electrospray ionization (ESI) remain under investigation. Compact conformers electrosprayed from aqueous solution in positive ion mode likely follow the charged residue model (CRM), which envisions analyte release after solvent evaporation to dryness. The concentration of nonvolatile salts such as NaCl increases sharply within vanishing CRM droplets, promoting nonspecific pairing of Cl- and Na+ with charged groups on the protein surface. For unfolded proteins, it has been proposed that ion formation occurs via the chain ejection model (CEM). During the CEM proteins are expelled from the droplet long before complete solvent evaporation has taken place. Here we examine whether salt adduction levels support the view that folded and unfolded proteins follow different ESI mechanisms. Solvent evaporation during the CEM is expected to be less extensive and, hence, the salt concentration at the point of protein release should be substantially lower than for the CRM. CEM ions should therefore exhibit lower adduction levels than CRM species. We explore the adduction behavior of several proteins that were chosen to allow comparative studies on folded and unfolded structures in the same solution. In-source activation eliminates chloride adducts via HCl release, generating protein ions that are heterogeneously charged because of sodiation and protonation. Sodiation levels measured under such conditions provide estimates of the salt adduction behavior experienced by the “nascent” analyte ions. Sodiation levels are significantly reduced for unfolded proteins, supporting the view that these species are indeed formed via the CEM.
Figure
?  相似文献   

20.
To elucidate the influence of amino (-NH2) and acetamide (-NHCOCH3, -NAc) groups in sugar chains on their ionization and fragmentation, cycloamyloses (cyclodextrins, CyDs) and lacto-oligosaccharide are analyzed by MALDI TOF/TOF and ESI Q-TOF mass spectrometry. CyD derivatives substituted by amino or acetamide groups are ideal analytes to extract the function group effects, which are amino-CyD with one hexosamine (HexNH2) and acetamide-CyD with one N-acetyl hexosamine (HexNAc). Interestingly, the relative ion intensities and isotope-like patterns in their product ion spectra depend on the functional groups and ion forms of sugar chains. Consequently, the results indicate that a proton (H+) localizes on the amino group of the amino sugar, and that the proton (H+) induces their fragmentation. Sodium cation (Na+) attachment is independent from amino group and exerts no influence on their fragmentation patterns in amino group except for mono- and disaccharide fragment ions because there is the possibility of the reducing end effect. In contrast, a sodium cation localizes much more frequently on the acetamide group in acetamide-CyDs because the chemical species with HexNAc are stable. Thus, their ions with HexNAc are abundant. These results are consistent with the fragmentation of lacto-neo-N-tetraose and maltotetraose, suggesting that a sodium cation generally localizes much more frequently on the acetamide group in sugar chains.
Graphical abstract
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号