首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A five-component crystal of lanthanum–gallium silicate group La3Ga5.3Ta0.5Al0.2O14 (LGTA) was grown by the Czochralski method. The LGTA crystal possesses unique thermal properties and substitution of Al for Ga in the unit cell leads to a substantial increase of electrical resistance at high temperatures. The unit cell parameters of LGTA were determined by powder diffraction. X-ray topography was used to study the crystal structure perfection: the growth banding normal to the growth axis were visualized. The independent piezoelectric constants d 11 and d 14 were measured by X-ray diffraction in the Bragg and Laue geometries. Excitation and propagation of surface acoustic waves were studied by the double-crystal X-ray diffraction at the BESSY II synchrotron radiation source. The analysis of the diffraction spectra of acoustically modulated crystals permitted the determination of the velocity of acoustic wave propagation and the power flow angles in different acoustic cuts of the LGTA crystal.  相似文献   

2.
The thermal conductivity κ of photonic crystals differing in degree of optical homogeneity (single crystals of synthetic opals) was measured in the 4.2–300 K temperature range. The thermal conductivity revealed, in addition to the conventional decrease in comparison with solid amorphous SiO2 characteristic of porous solids, a noticeable decrease for T<20 K, the range wherein the phonon wavelength in amorphous SiO2 approaches the diameters of the contact areas between the opal spheres. This effect is enhanced in the case of phonon propagation along the SiO2 sphere chains (six directions in the cubic opal lattice). The propagation of light waves (photons) through a medium with spatially modulated optical properties (photonic crystals) is presently well studied. The propagation of acoustic waves through a medium with spatially modulated acoustic properties (phononic crystals) may also reveal specific effects, which are discussed in this paper; among them are, e.g., the ballistic mode of phonon propagation and waveguide effects.  相似文献   

3.
A five-component crystal of the lanthanum–gallium silicate family Ca3TaGa3Si2O14 (CTGS) was grown by the Czochralski method. The CTGS crystal, like the langasite crystal (La3Ga5SiO14, LGS), possesses unique temperature properties and the fewer number of the Ga atoms in the unit cell makes the density much lower and, consequently, increases the velocity of acoustic wave propagation. The unit-cell parameters were determined by the powder diffraction technique. The defects in the CTGS crystal structure were studied by X-ray topography, which enables the visualization of growth banding characteristics of crystals grown by the Czochralski method. Surface acoustic wave (SAW) propagation in the CTGS crystal was investigated by the high-resolution X-ray diffraction method on the BESSY II synchrotron radiation source. The velocities of propagation and power flow angles of SAWs in the Y- and X-cuts of the CTGS crystal were determined from the X-ray diffraction spectra.  相似文献   

4.
Surface and quasi-longitudinal acoustic wave properties have been investigated in potassium titanyl arsenate (KTiOAsO4, KTA) single crystals for the first time. Surface acoustic wave (SAW) velocity, electromechanical coupling coefficient and power flow angle characteristics have been obtained in rotated Y-cut of KTA crystals. High SAW electromechanical coupling coefficient (0.4%) is found in Z-cut of KTA crystals. For high-frequency devices it is promising the resonators on quasi-longitudinal acoustic wave in X-cut of KTA crystals with sharp response in interdigital transducer conductance at resonance frequency.  相似文献   

5.
The propagation of bulk acoustic waves in single-crystal CuB2O4 copper metaborate is studied. The elastic, piezoelectric, and dielectric constants are calculated. The anisotropy in the parameters of bulk acoustic wave propagation in this crystal are determined.  相似文献   

6.
The acousto-optic interaction with leaky surface acoustic wave radiation into the bulk of YX-cut LiTaO3 crystals has been investigated. The light incidence and diffraction angles corresponding to the strongest acousto-optic interaction were calculated and measured as functions of the acoustic wave frequency. The dependencies of the diffracted light intensity on the amplitude of radio-frequency voltage applied to the interdigital transducer (IDT) were studied. Our acousto-optic measurements revealed generation, by the IDTs, of slow shear bulk acoustic waves propagating at different angles depending on their frequency. A secondary acousto-optic interaction from the bulk waves radiated by the receiving IDT has been studied.  相似文献   

7.
祁学宏  段文山  陈建敏  王善进 《中国物理 B》2011,20(2):25203-025203
The effect of dust size distribution in ultracold quantum dusty plasmas are investigated in this paper. How the dispersion relation and the propagation velocity for the quantum dusty plasma vary with the system parameters and the different dust distribution are studied. It is found that as the Fermi temperature of the dust grains increases the frequency of the wave increases for large wave number dust acoustic wave. The quantum parameter of Hd also increases the frequency of the large wave number dust acoustic wave. It is also found that the frequency ω0 and the propagation velocity v0 of quantum dust acoustic waves all increase as the total number density increases. They are greater for unusual dusty plasmas than those of the usual dusty plasma.  相似文献   

8.
An experimental study and analysis is presented of the acoustic properties of Sn2P2(Se0.28S0.72)6 ferroelectric crystals. Complete matrices of elastic stiffness and compliance as well as characteristic acoustic slowness surfaces have been obtained. The directions of propagation and polarisation of the slowest acoustic waves were determined. It was found that the elastic properties and the acoustic wave velocities for Sn2P2(Se0.28S0.72)6 and Sn2P2S6 crystals are almost the same at room temperature.  相似文献   

9.
Reflection of bulk acoustic waves in a TeO2 acoustooptic single crystal is studied for the case of a grazing incidence on the free crystal-vacuum boundary. The propagation and reflection of elastic waves is considered in the XOY plane of the material cut out in the form of a rectangular prism. An extraordinary case of reflection at the grazing incidence, when the energy flow of one of the two reflected waves in the crystal is directed opposite to that of the incident wave, is studied. It is shown that the transformation of the incident elastic energy into the energy of the backward-reflected wave can occur with an efficiency close to 100% and can be observed in a wide range of crystal cut angles. An abrupt change of the reflection coefficients in the vicinity of the critical angle is predicted.  相似文献   

10.
A new promising piezoelectric material Ca3TaGa3Si2O14 (CTGS) has been grown using the Czochralski method. Its unit-cell parameters have been determined by means of the X-ray phase analysis method. The X-ray diffractometry method was used to study the crystal acoustic properties; the velocities of surface acoustic wave propagation were measured for the first time and the power flow angles were determined.  相似文献   

11.
Scattering of obliquely incident plane acoustic waves from immersed infinite solid elastic cylinders is a complex phenomenon that involves generation of various types of surface waves on the body of the cylinder. Mitri [F.G. Mitri, Acoustic backscattering enhancement resulting from the interaction of an obliquely incident plane wave with an infinite cylinder, Ultrasonics 50 (2010) 675-682] recently showed that for a solid aluminum cylinder, there exist acoustic backscattering enhancements at a normalized frequency of ka?0.1. The incidence angle αc at which these enhancements are observed lies between the first (longitudinal) and second (shear) coupling angles of the cylinder. He also confirmed the observations previously reported by the authors that there exist backscattering enhancements of the dipole mode at large angles of incidence where no wave penetration into the cylinder is expected. In this paper, physical explanations are provided for the aforementioned observations by establishing a correlation between helical surface waves generated by oblique insonification of an immersed infinite solid elastic cylinder and the longitudinal and flexural guided modes that can propagate along the cylinder. In particular, it is shown that the backscattering enhancement observed at ka?0.1 is due to the excitation of the first longitudinal guided mode travelling at the bar velocity along the cylinder. It is also demonstrated that the dipole resonance mode observed at incidence angles larger than the Rayleigh coupling angle is associated with the first flexural guided mode of the cylinder. The correlation established between the scattering and propagation problems can be used in both numerical and experimental studies of interaction of mechanical waves with cylinders.  相似文献   

12.
The modulational instability of ion acoustic waves is studied in the presence of a dc magnetic field, taking the ion temperature into account. It is well known that the instability sets in for wave numbers exceeding 1.47 kD when there is no magnetic field and the ion temperature is negligible. The instability behaviour, however, changes drastically when either the magnetic field is switched on or the ion temperature becomes important or both. In general three different regions emerge wherein the waves becomes modulationally unstable. The relative sizes of these regions change as the magnetic field, the angle of propagation and the ion temperature are varied.  相似文献   

13.
The effects of surface acoustic wave (SAW) and resonance oscillation (RO) of bulk acoustic waves on the catalysis of metals were studied in an attempt to design a catalyst surface with artificially controllable functions for chemical reactions. In ethanol decomposition on a thin Cu film catalyst deposited on the propagation path of a shear horizontal leaky SAW, the SAW-on increased the activity for ethylene production remarkably but a little for acetaldehyde production. A poled ferroelectric z-cut LiNbO3 with a thickness extensional mode RO (TERO) and a x-cut LiNbO3 with a thickness shear mode RO (TSRO) were employed as a substrate, on which a thin Ag film catalyst was deposited. For ethanol decomposition, TERO increased ethylene production activity and the selectivity for ethylene production from 79 to 96%, whereas TSRO caused little activity enhancement for both ethylene and acetaldehyde production. The combination with the results of laser Doppler measurements showed that the activity enhancement and selectivity changes with SAW and RO of the acoustic waves are associated with dynamic large lattice displacement vertical to the surface.  相似文献   

14.
Theoretical fundamentals of modern methods of X-ray diffractometry of surface acoustic waves (SAW) are considered briefly. X-ray diffraction on SAW-modulated crystals under total external reflection conditions and the Bragg conditions for the YZ-cut of the LiNbO3 crystal is considered. Agreement of theoretical and experimental results makes it possible to use them for SAW diagnostics. Possibilities and limitations of listed methods for determining the SAW field parameters are discussed.  相似文献   

15.
The propagation of surface acoustic waves at microwave frequencies (1010 Hz) was studied on proton exchanged LiNbO3 crystals by means of Brillouin scattering. The proton exchange causes a large velocity reduction for surface acoustic waves propagating in the x–y plane of ay-cut crystal as well as for longitudinal bulk acoustic waves travelling in the proton exchanged sub-surface region. The velocity reduction amounts to about 20% for both types of waves. The corresponding elastic constants are reduced even by about 40% since the density remains almost constant. This softening seems to involve both the shear and compressional elastic constants, but in an anisotropic way.Thus by proton exchange it is possible to build acoustic waveguides adjacent to the surface, similar to the construction of optical waveguides. By a lateral control of the proton exchange rate optical elements for ultrasonic waves, for example, acoustic lenses can be produced without deformation of the flat surface.The absorption of surface acoustic waves on proton exchanged surfaces is stronger than on pure LiNbO3 indicating a novel absorption mechanism becoming active in the proton exchanged material.  相似文献   

16.
In this paper, we restrict our attention to the advection-reaction equation u t + [?(u)] x = ??(u), where ? and ?? are entire functions. Conditions for the propagation of a distributional wave profile are presented and the wave speed is evaluated. As an example, we prove that, under certain conditions, the propagation of delta-waves in models ruled by the diffusionless Burgers-Fisher equation is possible and compute the speeds of propagation of these waves. In the same setting, the propagation of travelling waves with the shape of a C 1-function with one jump discontinuity is also studied. These results will be easily explained by our theory of distributional products and are based on a rigorous and consistent concept of a solution that we have already introduced in previous works.  相似文献   

17.
Brillouin spectroscopy of acoustic phonons in transparent crystals and nontransparent metallic Co/Cu superlattices is reviewed. The method presents a directional sensitivity of the experiment. This feature is useful in elastic constants measurements in crystals and analysis of in-plane anisotropies of hyper-sound and spin waves in superlattices. Results for the LiTaO3, LiNbO3, LiNbO3:Cu, SLGO, SLAO crystals are provided. Spin wave results for the Co/Cu superlattices are presented.  相似文献   

18.
《Current Applied Physics》2020,20(7):835-840
Acoustic anomalies of relaxor ferroelectric Na1/2Bi1/2TiO3 single crystals were investigated over a wide temperature range from −196 °C to 900 °C by using Brillouin spectroscopy. The longitudinal sound velocity, the acoustic absorption coefficient and the elastic constant C11 were determined for the acoustic phonon mode propagating in the [100] direction. Two acoustic anomalies, weaker ones at the cubic-tetragonal phase transition temperature of ~540 °C and more pronounced ones at temperatures near 315 °C near the dielectric maximum temperature, were investigated and discussed in relation with the relevant order parameters coupled to the acoustic waves. The relaxation dynamics in the cubic phase were studied based on the flattening of the mode frequency and the half width, which was observed for the first time, and a modified Arrhenius law.  相似文献   

19.
We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic–acoustic media. A velocity–strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic–acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic–acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.  相似文献   

20.
一维非线性声波传播特性   总被引:3,自引:0,他引:3       下载免费PDF全文
张世功  吴先梅  张碧星  安志武 《物理学报》2016,65(10):104301-104301
针对一维非线性声波的传播问题进行了有限元仿真和实验研究. 首先推导了一维非线性声波方程的有限元形式, 含有高阶矩阵的非线性项导致声波具有波形畸变、谐波滋生、基频信号能量向高次谐波传递等非线性特性. 编制有限元程序对一维非线性声波进行了计算并对仿真得到的畸变非线性声波信号进行处理, 分析其传播性质和物理意义. 为验证有限元计算结果, 开展了水中的非线性声波传播的实验研究, 得到了不同输入信号幅度激励下和不同传播距离的畸变非线性声波信号. 然后对基波和二次谐波的传播性质进行详细讨论, 分析了二次谐波幅度与传播距离和输入信号幅度的变化关系及其意义, 拟合出二次谐波幅度随传播距离变化的方程并阐述了拟合方程的物理意义. 结果表明, 数值仿真信号及其频谱均与实验结果有较好的一致性, 证实计算方法和结果的正确性, 并提出了具有一定物理意义的二次谐波随传播距离变化的简单数学关系. 最后还对固体中的非线性声波传播性质进行了初步探讨. 本研究工作可为流体介质中的非线性声传播问题提供理论和实验依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号