首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
It is well known that a tone presented binaurally is louder than the same tone presented monaurally. It is less clear how this loudness ratio changes as a function of level. The present experiment was designed to directly test the Binaural Equal-Loudness-Ratio hypothesis (BELRH), which states that the loudness ratio between equal-SPL monaural and binaural tones is independent of SPL. If true, the BELRH implies that monaural and binaural loudness functions are parallel when plotted on a log scale. Cross-modality matches between string length and loudness were used to directly measure binaural and monaural loudness functions for nine normal listeners. Stimuli were 1-kHz 200-ms tones ranging in level from 5 dB SL to 100 dB SPL. A two-way ANOVA showed significant effects of level and mode (binaural or monaural) on loudness, but no interaction between the level and mode. Consequently, no significant variations were found in the binaural-to-monaural loudness ratio across the range of levels tested. This finding supports the BELRH. In addition, the present data were found to closely match loudness functions derived from binaural level differences for equal loudness using the model proposed by Whilby et al. [J. Acoust. Soc. Am. 119, 3931-3939 (2006)].  相似文献   

2.
To investigate how hearing loss of primarily cochlear origin affects the loudness of brief tones, loudness matches between 5- and 200-ms tones were obtained as a function of level for 15 listeners with cochlear impairments and for seven age-matched controls. Three frequencies, usually 0.5, 1, and 4 kHz, were tested in each listener using a two-interval, two--alternative forced--choice (2I, 2AFC) paradigm with a roving-level, up-down adaptive procedure. Results for the normal listeners generally were consistent with published data [e.g., Florentine et al., J. Acoust Soc. Am. 99, 1633-1644 (1996)]. The amount of temporal integration--defined as the level difference between equally loud short and long tones--varied nonmonotonically with level and was largest at moderate levels. No consistent effect of frequency was apparent. The impaired listeners varied widely, but most showed a clear effect of level on the amount of temporal integration. Overall, their results appear consistent with expectations based on knowledge of the general properties of their loudness-growth functions and the equal-loudness-ratio hypothesis, which states that the loudness ratio between equal-SPL long and brief tones is the same at all SPLs. The impaired listeners' amounts of temporal integration at high SPLs often were larger than normal, although it was reduced near threshold. When evaluated at equal SLs, the amount of temporal integration well above threshold usually was in the low end of the normal range. Two listeners with abrupt high-frequency hearing losses (slopes > 50 dB/octave) showed larger-than-normal maximal amounts of temporal integration (40 to 50 dB). This finding is consistent with the shallow loudness functions predicted by our excitation-pattern model for impaired listeners [Florentine et al., in Modeling Sensorineural Hearing Loss, edited by W. Jesteadt (Erlbaum, Mahwah, NJ, 1997), pp. 187-198]. Loudness functions derived from impaired listeners' temporal-integration functions indicate that restoration of loudness in listeners with cochlear hearing loss usually will require the same gain whether the sound is short or long.  相似文献   

3.
The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception was linked to a specific deficit, the auditory profiles of the individual listeners were characterized using measures of loudness perception, cognitive ability, binaural processing, temporal fine structure processing, and frequency selectivity, in addition to common audiometric measures. Two of the listeners were found not to perceive binaural pitch at all, despite a clear detection of monaural pitch. While both binaural and monaural pitches were detectable by all other listeners, identification scores were significantly lower for binaural than for monaural pitch. A total absence of binaural pitch sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization.  相似文献   

4.
McFadden [J. Acoust. Soc. Am. 57, 702-704 (1975)] questioned the accuracy and reliability of magnitude estimation for measuring loudness of tones that vary both in duration and level, whereas Stevens and Hall [Percept. Psychophys. 1, 319-327 (1966)] reported reasonable group data. To gain insight into this discrepancy, the present study compares loudness measures for 5- and 200-ms tones using magnitude estimation and equal-loudness matches from the same listeners. Results indicate that both procedures provide rapid and accurate assessments of group loudness functions for brief tones, but may not be reliable enough to reveal specific characteristics of loudness in individual listeners.  相似文献   

5.
A tone usually declines in loudness when preceded by a more intense inducer tone. This phenomenon is called "loudness recalibration" or "induced loudness reduction" (ILR). The present study investigates how ILR depends on level, loudness, and duration. A 2AFC procedure was used to obtain loudness matches between 2500-Hz comparison tones and 500-Hz test tones at 60 and 70 dB SPL, presented with and without preceding 500-Hz inducer tones. For 200-ms test and comparison tones, the amount of ILR did not depend on inducer level (set at 80 dB SPL and above), but ILR was greater with 200- than with 5-ms inducers, even when both were equally loud. For 5-ms tones, ILR was as great with 5- as with 200-ms inducers and about as great as when test and inducer tones both lasted 200 ms. These results suggest that (1) neither the loudness nor the SPL of the inducer alone governs ILR, and (2) inducer duration must equal or exceed test-tone duration to yield maximal amounts of ILR. Further analysis indicates that the efferent system may be partly responsible for ILR of 200-ms test tones, but is unlikely to account for ILR of 5-ms tones.  相似文献   

6.
This study tests the Equal-Loudness-Ratio hypothesis [Florentine et al., J. Acoust. Soc. Am. 99, 1633-1644 (1996)], which states that the loudness ratio between equal-SPL long and short tones is independent of SPL. The amount of temporal integration (i.e., the level difference between equally loud short and long sounds) is maximal at moderate levels. Therefore, the Equal-Loudness-Ratio hypothesis predicts that the loudness function is shallower at moderate levels than at low and high levels. Equal-loudness matches and cross-modality string-length matches were used to assess the form of the loudness function for 5 and 200 ms tones at 1 kHz and the loudness ratio between them. Results from nine normal listeners show that (1) the amount of temporal integration is largest at moderate levels, in agreement with previous studies, and (2) the loudness functions are shallowest at moderate levels. For eight of the nine listeners, the loudness ratio between the 200 and 5 ms tones is approximately constant, except at low levels where it tends to increase. The average data show good agreement between the two methods, but discrepancies are apparent for some individuals. These findings support the Equal-Loudness-Ratio hypothesis, except at low levels.  相似文献   

7.
Preliminary data [M. Epstein and M. Florentine, Ear. Hear. 30, 234-237 (2009)] obtained using speech stimuli from a visually present talker heard via loudspeakers in a sound-attenuating chamber indicate little difference in loudness when listening with one or two ears (i.e., significantly reduced binaural loudness summation, BLS), which is known as "binaural loudness constancy." These data challenge current understanding drawn from laboratory measurements that indicate a tone presented binaurally is louder than the same tone presented monaurally. Twelve normal listeners were presented recorded spondees, monaurally and binaurally across a wide range of levels via earphones and a loudspeaker with and without visual cues. Statistical analyses of binaural-to-monaural ratios of magnitude estimates indicate that the amount of BLS is significantly less for speech presented via a loudspeaker with visual cues than for stimuli with any other combination of test parameters (i.e., speech presented via earphones or a loudspeaker without visual cues, and speech presented via earphones with visual cues). These results indicate that the loudness of a visually present talker in daily environments is little affected by switching between binaural and monaural listening. This supports the phenomenon of binaural loudness constancy and underscores the importance of ecological validity in loudness research.  相似文献   

8.
To assess temporal integration in normal hearing, cochlear impairment, and impairment simulated by masking, absolute thresholds for tones were measured as a function of duration. Durations ranged from 500 ms down to 15 ms at 0.25 kHz, 8 ms at 1 kHz, and 2 ms at 4 and 14 kHz. An adaptive 2I, 2AFC procedure with feedback was used. On each trial, two 500-ms observation intervals, marked by lights, were presented with an interstimulus interval of 250 ms. The monaural signal was presented in the temporal center of one observation interval. The results for five normal and six impaired listeners show: (1) normal listeners' thresholds decrease by about 8 to 10 dB per decade of duration, as expected; (2) listeners with cochlear impairments generally show less temporal integration than normal listeners; and (3) listeners with impairments simulated using masking noise generally show the same amount of temporal integration as normal listeners tested in the quiet. The difference between real and simulated impairments indicates that the reduced temporal integration observed in impaired listeners probably is not due to splatter of energy to frequency regions where thresholds are low, but reflects reduced temporal integration per se.  相似文献   

9.
Binaural speech intelligibility in noise for hearing-impaired listeners   总被引:2,自引:0,他引:2  
The effect of head-induced interaural time delay (ITD) and interaural level differences (ILD) on binaural speech intelligibility in noise was studied for listeners with symmetrical and asymmetrical sensorineural hearing losses. The material, recorded with a KEMAR manikin in an anechoic room, consisted of speech, presented from the front (0 degree), and noise, presented at azimuths of 0 degree, 30 degrees, and 90 degrees. Derived noise signals, containing either only ITD or only ILD, were generated using a computer. For both groups of subjects, speech-reception thresholds (SRT) for sentences in noise were determined as a function of: (1) noise azimuth, (2) binaural cue, and (3) an interaural difference in overall presentation level, simulating the effect of a monaural hearing acid. Comparison of the mean results with corresponding data obtained previously from normal-hearing listeners shows that the hearing impaired have a 2.5 dB higher SRT in noise when both speech and noise are presented from the front, and 2.6-5.1 dB less binaural gain when the noise azimuth is changed from 0 degree to 90 degrees. The gain due to ILD varies among the hearing-impaired listeners between 0 dB and normal values of 7 dB or more. It depends on the high-frequency hearing loss at the side presented with the most favorable signal-to-noise (S/N) ratio. The gain due to ITD is nearly normal for the symmetrically impaired (4.2 dB, compared with 4.7 dB for the normal hearing), but only 2.5 dB in the case of asymmetrical impairment. When ITD is introduced in noise already containing ILD, the resulting gain is 2-2.5 dB for all groups. The only marked effect of the interaural difference in overall presentation level is a reduction of the gain due to ILD when the level at the ear with the better S/N ratio is decreased. This implies that an optimal monaural hearing aid (with a moderate gain) will hardly interfere with unmasking through ITD, while it may increase the gain due to ILD by preventing or diminishing threshold effects.  相似文献   

10.
The detection of slow (5 Hz) center-frequency modulations of formants (signals) can be impaired by the simultaneous presentation of off-frequency modulated formants (maskers) to the same ear [J. Lyzenga and R. P. Carlyon, J. Acoust. Soc. Am. 105, 2792-2806 (1999)]. In the present study we examine this "formant-frequency modulation detection interference (FMDI)" for various binaural masker presentation schemes. Signals and maskers were formantlike complex tones, centered around 1500 and 3000 Hz, respectively. Fundamentals of 80 and 240 Hz were used. The signals were presented to the right ear. The maskers were presented either to the right, the left, or to both ears, and they were either unmodulated or modulated at a slow rate (10 Hz). They had the same fundamental as the signals. Hardly any interference was found for the unmodulated maskers. For modulated maskers, the amount of FMDI depended strongly on the binaural masker presentation scheme. Substantial interference was found for the ipsilateral maskers. Interference was smaller for the contralateral maskers. In both cases the FMDI increased with increasing masker level. Substantial interference was also found for the binaural maskers. Imposing different interaural time and level differences (ITDs and ILDs) on maskers and signals did not affect FMDI. The same was true for the ITD condition when the maskers had different fundamentals than the signals, though FMDI was slightly smaller here. The amount of interference for the binaural maskers was roughly equal to that of the corresponding monaural masker with the largest effect. The data could not be described accurately using a model based on the loudness of the maskers. On the other hand, they were well described by a model in which the amount of FMDI was predicted from a "weighted combination" of the monaural masker levels.  相似文献   

11.
This study examined whether the level effects seen in monaural intensity discrimination (Weber's law and the "near miss") in a two-interval task are also observed in discrimination of interaural intensity differences (IIDs) in a single-interval task. Both tasks were performed for various standard levels of 4-kHz pure tones and broadband noise. The Weber functions (10 log deltaI/I versus I in dB) in the monaural and binaural conditions were parallel. For noise, the Weber functions had slopes close to zero (Weber's law) while the Weber functions for the tones had a mean slope of -0.089 (near miss). The near miss for the monaural and binaural tasks with tones was eliminated when a high-pass masker was gated with the listening intervals. The near-miss was also observed for 250- and 1000-Hz tones in the binaural task despite overall decreased sensitivity to changes in IID at 1000 Hz. The binaural thresholds showed a small (about 2-dB) advantage over monaural thresholds only in the broadband noise conditions. More important, however, is the fact that the level effects seen monaurally are also seen binaurally. This suggests that the basic mechanisms responsible for Weber's law and the near miss are common to monaural and binaural processing.  相似文献   

12.
The influence of the degree of envelope modulation and periodicity on the loudness and effectiveness of sounds as forward maskers was investigated. In the first experiment, listeners matched the loudness of complex tones and noise. The tones had a fundamental frequency (F0) of 62.5 or 250 Hz and were filtered into a frequency range from the 10th harmonic to 5000 Hz. The Gaussian noise was filtered in the same way. The components of the complex tones were added either in cosine phase (CPH), giving a large crest factor, or in random phase (RPH), giving a smaller crest factor. For each F0, subjects matched the loudness between all possible stimulus pairs. Six different levels of the fixed stimulus were used, ranging from about 30 dB SPL to about 80 dB SPL in 10-dB steps. Results showed that, at a given overall level, the CPH and the RPH tones were louder than the noise, and that the CPH tone was louder than the RPH tone. The difference in loudness was larger at medium than at low levels and was only slightly reduced by the addition of a noise intended to mask combination tones. The differences in loudness were slightly smaller for the higher than for the lower F0. In the second experiment, the stimuli with the lower F0s were used as forward maskers of a 20-ms sinusoid, presented at various frequencies within the spectral range of the maskers. Results showed that the CPH tone was the least effective forward masker, even though it was the loudest. The differences in effectiveness as forward maskers depended on masker level and signal frequency; in order to produce equal masking, the level of the CPH tone had to be up to 35 dB above that of the RPH tone and the noise. The implications of these results for models of loudness are discussed and a model is presented based on neural activity patterns in the auditory nerve; this predicts the general pattern of loudness matches. It is suggested that the effects observed in the experiments may have been influenced by two factors: cochlear compression and suppression.  相似文献   

13.
Contours of equal loudness and threshold of hearing under binaural free-field conditions for the frequency range 20–15 000 Hz were standardized internationally in 1961. This paper describes an extension of the data in the low-frequency range down to 3·15 Hz, at l levels from threshold to 70 phon. The latter corresponds to nearly 140 dB sound pressure level at the lowest frequency. Direct loudness comparisons were made between tones at intervals of an octave, and the resulting contours were checked by numerical loudness estimation.  相似文献   

14.
Temporal processing in the aging auditory system.   总被引:2,自引:0,他引:2  
Measures of monaural temporal processing and binaural sensitivity were obtained from 12 young (mean age = 26.1 years) and 12 elderly (mean age = 70.9 years) adults with clinically normal hearing (pure-tone thresholds < or = 20 dB HL from 250 to 6000 Hz). Monaural temporal processing was measured by gap detection thresholds. Binaural sensitivity was measured by interaural time difference (ITD) thresholds. Gap and ITD thresholds were obtained at three sound levels (4, 8, or 16 dB above individual threshold). Subjects were also tested on two measures of speech perception, a masking level difference (MLD) task, and a syllable identification/discrimination task that included phonemes varying in voice onset time (VOT). Elderly listeners displayed poorer monaural temporal analysis (higher gap detection thresholds) and poorer binaural processing (higher ITD thresholds) at all sound levels. There were significant interactions between age and sound level, indicating that the age difference was larger at lower stimulus levels. Gap detection performance was found to correlate significantly with performance on the ITD task for young, but not elderly adult listeners. Elderly listeners also performed more poorly than younger listeners on both speech measures; however, there was no significant correlation between psychoacoustic and speech measures of temporal processing. Findings suggest that age-related factors other than peripheral hearing loss contribute to temporal processing deficits of elderly listeners.  相似文献   

15.
The induced reduction in the loudness (ILR) of a weaker tone caused by a preceding stronger tone was measured with both tones in the same ear (ipsilateral ILR) and also in opposite ears (contralateral ILR). The two tones were always equal in duration and were presented repeatedly over several minutes. When the tone duration was 200 ms, for 24 listeners the loudness reduction averaged 11 dB under ipsilateral ILR and 6 dB under contralateral ILR. When the duration was 5 ms, ILR was 8 dB whether ipsilateral or contralateral. For each duration, ipsilateral and contralateral ILR were strongly correlated (r around 0.80).  相似文献   

16.
Subjects judged the loudness and the lateral position of dichotic transient signals, which were presented at equal and unequal levels, synchronously and asynchronously, to the two ears. Binaural loudness summation of clicks does not obey a law of linear addition: It is partial at low level and superadditive at high level. Supersummation is greater for interaurally delayed clicks than for coincidental ones. The relation between click loudness and sound pressure (over moderate SLs) can be described as a power function with a greater exponent for the binaural function. Lateral positions spread over a greater range for interaural level differences than for interaural time differences. The time-intensity trading ratio was greater than is typically reported for tones. When sound lateralization was induced by interaural time difference, but not by intensity difference, a virtually perfect negative correlation between loudness and extent of off-center displacement existed.  相似文献   

17.
A series of three experiments used the method of magnitude estimation to examine binaural summation of the loudness of a 1000-Hz tone heard in the quiet and against various backgrounds of masking noise. In the quiet, binaural loudness as measured in sones, is twice monaural loudness. Two conditions of noise masking acted to increase the ratio of binaural/monaural loudness in sones above 2:1--that is, to produce supersummation. (1) When tone was presented to both ears, but masking noise to just one ear (dichotic stimulation), the loudness of the binaural tone was 30%-35% greater than the sum of the loudness of the monaural components. This increase in summation provides a suprathreshold analog to increases in threshold sensitivity observed with dichotic stimulation (masking-level differences). (2) Supersummation was also evident when tone and noise alike were presented to both ears (diotic stimulation); here, the binaural tone's loudness was 10%-25% greater than the sum of the monaural components. The increase in summation with diotic stimulation may be related to the characteristics of binaural summation of the noise masker itself.  相似文献   

18.
The spectral resolution of the binaural system was measured using a tone-detection task in a binaural analog of the notched-noise technique. Three listeners performed 2-interval, 2-alternative, forced choice tasks with a 500-ms out-of-phase signal within 500 ms of broadband masking noise consisting of an "outer" band of either interaurally uncorrelated or anticorrelated noise, and an "inner" band of interaurally correlated noise. Three signal frequencies were tested (250, 500, and 750 Hz), and the asymmetry of the filter was measured by keeping the signal at a constant frequency and moving the correlated noise band relative to the signal. Thresholds were taken for bandwidths of correlated noise ranging from 0 to 400 Hz. The equivalent rectangular bandwidth of the binaural filter was found to increase with signal frequency, and estimates tended to be larger than monaural bandwidths measured for the same listeners using equivalent techniques.  相似文献   

19.
20.
In an effort to provide a unifying framework for understanding monaural and binaural processing of intensity differences, an experiment was performed to assess whether temporal weighting functions estimated in two-interval monaural intensity-discrimination tasks could account for data in single-interval interaural intensity-discrimination tasks. In both tasks, stimuli consisted of a 50-ms burst of noise with a 5-ms probe segment at temporal positions ranging between the onset and offset of the overall stimulus. During the probe segment, one monaural interval or binaural channel of each trial contained an intensity increment and the other contained a decrement. Listeners were instructed to choose the interval/channel containing the increment. The pattern of monaural thresholds was roughly symmetrical (an inverted U) across temporal position of the probe but interaural thresholds were substantially higher for a brief time interval following stimulus onset. A two-sided exponential temporal window fit to the monaural data accounted for the interaural data well when combined with a post-onset-weighting function that described greatest weighting of binaural information at stimulus onset. A second experiment showed that the specific procedure used in measuring fringed interaural-intensity-difference-discrimination thresholds affects thresholds as a function of fringe duration and influences the form of the best-fitting post-onset-weighting function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号