首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A family of bis-terdentate iridium(III) complexes is reported which contain a cyclometalated, N/\C[wedge]N-coordinating 1,3-di(2-pyridyl)benzene derivative. This coordination mode is favored by blocking competitive cyclometalation at the C4 and C6 positions of the ligand. Thus, 1,3-di(2-pyridyl)-4,6-dimethylbenzene (dpyxH) reacts with IrCl3 x 3H2O to generate a dichlorobridged dimer [Ir(dpyx-N,C,N)Cl(mu-Cl)]2, 1. This dimer is cleaved by DMSO to give [Ir(dpyx)(DMSO)Cl2], the X-ray crystal structure of which is reported here, confirming the N/\C/\N coordination mode of dpyx. The dimer 1 can also be cleaved by a variety of other ligands to generate novel classes of mononuclear complexes. These include charge-neutral bis-terdentate complexes of the form [Ir(N/\C/\N)(C/\N/\C)] and [Ir(N/\C/\N)(C/\N/\O)], by reaction of 1 with C/\N/\C-coordinating ligands (e.g., 2,6-diphenylpyridine and derivatives) and C/\N/\O-coordinating ligands (based on 6-phenylpicolinate), respectively. Treatment of 1 with terpyridines leads to dicationic complexes of the type [Ir(N/\C/\N)(N/\N/\N)]2+, while 2-phenylpyridine gives [Ir(dpyx-N/\C/\N)(ppy-C,N)Cl]. All of the charge-neutral complexes are luminescent in fluid solution at room temperature. Assignment of the emission to charge-transfer excited states with significant MLCT character is supported by DFT calculations. In the [Ir(N/\C/\N)(C/\N/\C)] class, fluorination of the C/\N/\C ligand at the phenyl 2' and 4' positions leads to a blue-shift in the emission and to an increase in the quantum yield (lambda(max) = 547 nm, phi = 0.41 in degassed CH(3)CN at 295 K) compared to the nonfluorinated parent complex (lambda(max) = 585 nm, phi = 0.21), as well as to a stabilization of the compound with respect to photodissociation through cleavage of mutually trans Ir-C bonds. [Ir(dpyx-N/\C/\N)(ppy-C,N)Cl] is an exceptionally bright emitter: phi = 0.76, lambda(max) = 508 nm, in CH(3)CN at 295 K. In contrast, the [Ir(N/\C/\N)(C/\N/\O)] complexes are much less emissive, shown to be due to fast nonradiative decay of the excited state, probably involving reversible Ir-O bond cleavage. The [Ir(N/\C/\N)(N/\N/\N)]2+ complexes are very feeble emitters even at 77 K, probably due to the almost exclusively interligand charge-transfer nature of the lowest-energy excited state in these complexes.  相似文献   

2.
A new family of cationic iridium(III) complexes is reported that contain two cyclometalating terdentate ligands. The complex [Ir(N--C--N-dpyx)(N--N--C-phbpy)]+ (1) contains one N--C--N-coordinating ligand, cyclometalating through the central phenyl ring, and one N--N--C-coordinated ligand, cyclometalated at the peripheral phenyl ring [dpyxH = 1,3-di(2-pyridyl)-4,6-dimethylbenzene; phbpyH = 6-phenyl-2,2'-bipyridine]. This binding mode dictates a mutually cis arrangement of the cyclometalated carbon atoms: the complexes are thus bis-terdentate analogues of the well-known [Ir(N--C-ppy)2(N--N-bpy)]+ family of complexes, which similarly contain a cis-C2N4 coordination environment. The dpyx ligand can be brominated regioselectively at the carbon atom para to the metal under mild conditions. Starting from a modified complex, [Ir(N--C--N-dpyx)(N--N--C-mtbpy-phi-Br)]+ (2), which incorporates a pendent bromophenyl group, a sequential cross-coupling-bromination-cross-coupling strategy can be applied for the stepwise introduction of aryl groups into the ligands, using in situ palladium-catalyzed Suzuki reactions with arylboronic acids [mtbpyH-phi-Br = 4-(p-bromophenyl)-6-(m-tolyl)bipyridine]. Dimetallic complexes 6 and 7 have similarly been prepared by a palladium-catalyzed reaction of complex 2 with 1,4-benzenediboronic acid and 4,4'-biphenyldiboronic acid, respectively. All five monometallic complexes and both dimetallic systems are luminescent in solution, emitting around 630 nm in MeCN at 298 K, with quantum yields in the range of 0.02-0.06, superior to [Ir(ppy)2(bpy)]+. The luminescence, electrochemistry, and singlet-oxygen-sensitizing abilities of the new family of complexes are discussed in the context of the tris-bidentate analogues and related bis-terdentate compounds that contain a trans arrangement of cyclometalated carbon atoms.  相似文献   

3.
The synthesis, characterization, and photophysical properties of the N6-N5C bichromophoric [(bpy)2Ru(I)Ru(ttpy)][PF6]3 (bpy is 2,2'-bipyridine and ttpy is 4'-p-tolyl-2,2':6',2'-terpyridine) and [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (I and II are bpy-dipyridylbenzene ditopic ligands bridged by an ethynyl and phenyl unit, respectively) complexes are reported together with the model mononuclear complexes [(bpy)2Ru(I)][PF6]2, [(bpy)2Ru(II)][PF6]2, [Ru(VI)(ttpy)][PF6] (VI is 3,5-di(2-pyridyl)-biphenyl) and [Ru(dpb)(ttpy)][PF(6)] (Hdpb is 1,3-di(2-pyridyl)-benzene). The electrochemical data show that there is little ground state electronic communication between the metal centers in the bimetallic complexes. Selective excitation of the N(5)C unit in the bichromophoric systems leads to luminescence typical for a bis-tridentate cyclometallated ruthenium complex and is similar to the [Ru(VI)(ttpy)][PF6] model complex. In contrast, the luminescence from the tris-bidentate N6 unit is efficiently quenched by energy transfer to the N5C unit. The energy transfer rate has been determined by femtosecond pump-probe measurements to 0.7 ps in the ethynyl-linked [(bpy)2Ru(I)Ru(ttpy)][PF6]3 and to 1.5 ps in the phenyl-linked [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (in acetonitrile solution at 298 K), and is inferred to occur via a Dexter mechanism.  相似文献   

4.
The remarkable luminescence properties of the platinum(II) complex of 1,3-di(2-pyridyl)benzene, acting as a terdentate N=C=N-coordinating ligand cyclometalated at C2 of the benzene ring ([PtL(1)Cl]), have been investigated, together with those of two new 5-substituted analogues [PtL(2)Cl] and [PtL(3)Cl] [HL(2) = methyl-3,5-di(2-pyridyl)benzoate; HL(3) = 3,5-di(2-pyridyl)toluene]. All three complexes are intense emitters in degassed solution at 298 K (lambda(max) 480-580 nm; phi(lum) = 0.60, 0.58, and 0.68 in CH(2)Cl(2)), displaying highly structured emission spectra in dilute solution, with lifetimes in the microsecond range (7.2, 8.0, and 7.8 micros). On the basis of the very small Stokes shift, the highly structured profiles, and the relatively long lifetimes, the emission is attributed to an excited state of primarily (3)pi-pi character. At concentrations >1 x 10(-)(5) M, structureless excimer emission centered at ca. 700 nm is observed. The X-ray crystal structure of [PtL(2)Cl] is also reported.  相似文献   

5.
A series of novel emissive Ir(III) complexes having the coordination environments of [Ir(N--N--N)2]3+, [Ir(N--N--N)(N--N)Cl]2+, and [Ir(N--N--N)(N--C--N)]2+ with 2,6-bis(1-methyl-benzimidazol-2-yl)pyridine (L1, N--N--N), 1,3-bis(1-methyl-benzimidazol-2-yl)benzene (L2H, N--C--N), 4'-(4-methylphenyl)-2,2':6',2' '-terpyridine (ttpy, N--N--N), and 2,2'-bipyridine (bpy, N--N) have been synthesized and their photophysical and electrochemical properties studied. The Ir(III) complexes exhibited phosphorescent emissions in the 500-600 nm region, with lifetimes ranging from approximately 1-10 micros at 295 K. Analysis of the 0-0 energies and the redox potentials indicated that the lowest excited state of [Ir(L1)(L2)]2+ possessed the highest contribution of 3MLCT (MLCT = metal-to-ligand charge transfer) among the Ir(III) complexes, reflecting the sigma-donating ability of the tridentate ligand, ttpy < L1 < L2. The emission quantum yields (phi) of the Ir(III) complexes ranged from 0.037 to 0.19, and the highest phi value (0.19) was obtained for [Ir(L1)(bpy)Cl]2+. Radiative rate constants (k(r)) were 1.2 x 10(4) s(-1) for [Ir(ttpy)2]3+, 3.7 x 10(4) s(-1) for [Ir(L1)(bpy)Cl]2+, 3.8 x 10(4) s(-1) for [Ir(ttpy)(bpy)Cl]2+, 3.9 x 10(4) s(-1) for [Ir(L1)2]3+, and 6.6 x 10(4) s(-1) for [Ir(L1)(L2)]2+. The highest radiative rate for [Ir(L1)(L2)]2+ with the highest contribution of 3MLCT could be explained in terms of the singlet-triplet mixing induced by spin-orbit coupling of 5d electrons in the MLCT electronic configurations.  相似文献   

6.
The absorption and emission spectra of the Pt(II) complexes containing N wedge C wedge N-coordinating tridentate ligands, platinum(II) 1,3-di(2-pyridyl)benzene chloride [Pt(dpb)Cl] and platinum(II) 3,5-di(2-pyridyl)toluene chloride [Pt(dpt)Cl], together with their corresponding free ligands, 1,3-di(2-pyridyl)benzene (dpbH) and 3,5-di(2-pyridyl)toluene (dptH), have been analyzed by density functional theory (DFT) for the ground state and time-dependent DFT (TDDFT) for the excited states. T(1)(A(1)) and S(1)(B(2)) of the complexes (in C(2)(v) symmetry) were assigned on the basis of the calculated excitation energies as well as comparison of the experimental spectroscopic properties and the calculated states' characteristics. The calculated excitation energies for T(1) and S(1) of the complexes as well as those for T(1) of the free ligands were in good agreement with their observed values within 600 cm(-1). The d-pi* characters of the excited states were evaluated from the change in electron densities between the ground and excited states by Mulliken population analysis; values of 25% for T(1) and 32% for S(1) were obtained for both complexes. The calculated values of d-pi* character were found to be consistent with the reported emission lifetimes as well as the observed emission energy shifts from the corresponding free ligands. Most spectroscopic properties of the complexes and the free ligands, which include solvatochromic shift, Stokes shifts, methyl substitution shifts, and emission spectra profiles, were well explained from the calculation results.  相似文献   

7.
刘坚  韦春 《无机化学学报》2012,28(2):398-404
合成了一种含有载流子传输基新的铱配合物(BPPBI)2Ir(ECTFBD)[HBPPBI:1-苯基-2-(4-联苯基)苯并咪唑,HECTFBD:1-(9-乙基-3-咔唑基)-4,4,4-三氟-1,3-丁二酮],其结构和组成经核磁共振氢谱和元素分析所证实。研究了这种铱配合物二氯甲烷溶液的光物理和电化学性质。制作了基于这种铱配合物的电致磷光器件。器件结构是ITO/MoO3(10 nm)/NPB(80 nm)/CBP:x%(BPPBI)2Ir(ECTFBD)(20 nm)/TPBi(45 nm)/LiF/Al[x%:质量百分比为4%和7%的掺杂浓度;NPB:N4,N4′-二(1-萘基)-N4,N4′-二苯基-4,4′-联苯二胺,CBP:4,4′-二(9-咔唑基)联苯,TPBi:1,3,5-三(2-(1-苯基)苯并咪唑基)苯]。这些器件显示出深黄色的发射。对于7%掺杂浓度器件,最大的电流效率和最大发光亮度分别是5.2 cd.A-1和8 690 cd.m-2。  相似文献   

8.
We report a theoretical analysis of a series of heteroleptic iridium(III) complexes (dox)(2)Ir(acac) [dox = 2,5-diphenyl-1,3,4-oxadiazolato-N,C(2), acac = acetylacetonate] (1a), (fox)(2)Ir(acac) [fox = 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazolato-N,C(2)] (1b), (fox)(2)Ir(Et(2)dtc) [Et(2)dtc = N,N'-diethyldithiocarbamate] (2), (fox)(2)Ir(Et(2)dtp) [Et(2)dtp = O,O'-diethyldithiophosphate] (3), (pypz)(2)Ir(acac) [pypz = 3,5-di(2-pyridyl)pyrazole] (4a), (O-pypz)(2)Ir(acac) (4b), (S-pypz)(2)Ir(acac) (4c) and (bptz)(2)Ir(acac) [bptz = 3-tert-butyl-5-(2-pyridyl)triazole] (5) by using the density functional theory (DFT) method to investigate their electronic structures and photophysical properties and obtain further insights into the phosphorescent efficiency mechanism. Meanwhile, we also investigate the influence of ancillary and cyclometalated ligands on the properties of the above complexes. The results reveal that the nature of the ancillary ligands can influence the electron density distributions of frontier molecular orbitals and their energies, resulting in change in transition character and emission color, while the different cyclometalated ligands have a large impact on the charge transfer performances of the studied complexes. The calculated absorption and luminescence properties of the four complexes 1a, 1b, 2 and 3 are compared with the available experimental data and a good agreement is obtained. Further, the assumed complexes 4a and 4b possess better charge transfer abilities and more balanced charge transfer rates, and they are potential candidates as blue-emitting materials.  相似文献   

9.
Seven useful mixed-ligand complexes in the form of [Ir(terpy)(L)Cl]2+ were prepared and their spectroscopic and electrochemical properties were investigated. The ligands used were terpy = 2,2':6',2'-terpyridine, L = 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 4,4'-diphenyl-2,2'-bipyridine, 1,10-phenanthroline, 5-phenyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 2,3-bis(2-pyridyl)pyrazine. Synthetic methods were developed by a sequential ligand-replacement which occurred in the reaction vessel using a microwave oven. All complexes showed that LUMOs are based on the pi-system contribution of the terpyridine ligand for [Ir(terpy)(bpy)Cl]2+, [Ir(terpy)(dmbpy)Cl]2+, [Ir(terpy)(dpbpy)Cl]2+, [Ir(terpy)(phen)Cl]2+, [Ir(terpy)(dpphen)Cl]2+ and [Ir(terpy)(phphen)Cl]2+. On the other hand, the LUMO in the [Ir(terpy)(bppz)Cl]2+ complex is localized on the pi-system of the bppz ligand, whereas the HOMOs in the iridium complexes are localized on the terpyridine ligand. It was found that Ir(terpy)(L)Cl emits in a fluid solution at room temperature. The ancillary ligands, such as terpy and bpy, have been explored to extend the lifetime of the triplet 3(pi-pi') excited states of Ir(III) terpyridine complexes. Ir(III) terpyridine units with an electron donor (dmbpy) or electron acceptor substituents (terpy, dpbpy, phphen, dpphen and bppz) are found to decrease the energy of the 3LC states for use as photosensitizer molecular components in supramolecular devices. The spectroscopic and electrochemical details are also reported herein.  相似文献   

10.
A series of homodinuclear platinum(II) complexes containing bridging chalcogenido ligands, [Pt(2)(mu-E)(2)(P empty set N)(4)] (P empty set N=dppy, E=S (1), Se (2); P empty set N=tBu-dppy, E=S (3)) (dppy=2-(diphenylphosphino)pyridine, tBu-dppy=4-tert-butyl-2-(diphenylphosphino)pyridine) have been synthesized and characterized. The nucleophilicity of the [Pt(2)E(2)] unit towards a number of d(10) metal ions and complexes has been demonstrated through the successful isolation of a number of novel heteropolynuclear platinum(II)-copper(I), -silver(I), and -gold(I) complexes: [[Pt(2)(mu(3)-E)(2)(dppy)(4)](2)Ag(3)](PF(6))(3) (E=S (4); Se (5)) and [Pt(2)(dppy)(4)(mu(3)-E)(2)M(2)(dppm)]X(2) (E=S, M=Ag, X=BF(4) (6); E=S, M=Cu, X=PF(6) (7); E=S, M=Au, X=PF(6) (8); E=Se, M=Ag, X=PF(6) (9); E=Se, M=Au, X=PF(6) (10)). Some of them display short metal.metal contacts. These complexes have been found to possess interesting luminescence properties. Through systematic comparison studies, the emission origin has been probed.  相似文献   

11.
The ligands 4-methylthio-6-phenyl-2,2'-bipyridine (1) and the corresponding sulfoxide (2) and sulfone (3) have been synthesized and characterized in solution, and in the solid state by single crystal X-ray diffraction. Compounds 2 and 3 crystallize in the same space group (C2/c) with similar unit cell parameters; a small increase in the unit cell volume allows for the presence of the extra oxygen atom in 3. The sulfoxide and sulfone groups adopt conformations that permit intramolecular OHC(aryl) hydrogen bonds. The complexes [Ir(ppy)(2)L][PF(6)] with L = 1, 2 or 3 have been prepared and characterized. The asymmetric sulfur atom in ligand 2 gives rise to pairs of diastereoisomers of the complex which can be distinguished in the (1)H and (13)C NMR spectra. In solution, exchange of [PF(6)](-) by [Δ-TRISPHAT](-) gives rise to four diastereoisomers and we observed good dispersion of (1)H NMR resonances, especially for those assigned to protons close to the asymmetric sulfur atom. A single crystal X-ray diffraction study of 2{[Ir(ppy)(2)(3)][PF(6)]}·CHCl(3)·3H(2)O reveals that the complex crystallizes in the chiral space group P2(1)2(1)2(1), the asymmetric unit containing crystallographically independent Δ- and Λ-[Ir(ppy)(2)(3)](+) cations. This provides a rare example of a so-called kryptoracemate in the solid state. In MeCN solution, [Ir(ppy)(2)(1)][PF(6)], [Ir(ppy)(2)(2)][PF(6)] and [Ir(ppy)(2)(3)][PF(6)] are weakly emissive (λ(em) = 600, 647 and 672 nm, respectively) and preliminary studies of the electroluminescent properties of [Ir(ppy)(2)(2)][PF(6)] indicate that the complexes are not suitable candidates for LECs.  相似文献   

12.
The reaction of new dinuclear gold(I) organometallic complexes containing mesityl ligands and bridging bidentate phosphanes [Au(2)(mes)(2)(μ-LL)] (LL=dppe: 1,2-bis(diphenylphosphano)ethane 1a, and water-soluble dppy: 1,2-bis(di-3-pyridylphosphano)ethane 1b) with Ag(+) and Cu(+) lead to the formation of a family of heterometallic clusters with mesityl bridging ligands of the general formula [Au(2)M(μ-mes)(2) (μ-LL)][A] (M=Ag, A=ClO(4)(-), LL=dppe 2a, dppy 2b; M=Ag, A=SO(3)CF(3)(-), LL=dppe 3a, dppy 3b; M=Cu, A=PF(6)(-), LL=dppe 4a, dppy 4b). The new compounds were characterized by different spectroscopic techniques and mass spectrometry The crystal structures of [Au(2)(mes)(2)(μ-dppy)] (1b) and [Au(2)Ag(μ-mes)(2)(μ-dppe)][SO(3)CF(3)] (3a) were determined by a single-crystal X-ray diffraction study. 3a in solid state is not a cyclic trinuclear Au(2)Ag derivative but it gives an open polymeric structure instead, with the {Au(2)(μ-dppe)} fragments "linked" by {Ag(μ-mes)(2)} units. The very short distances of 2.7559(6)?? (Au-Ag) and 2.9229(8)?? (Au-Au) are indicative of gold-silver (metallophilic) and aurophilic interactions. A systematic study of their luminescence properties revealed that all compounds are brightly luminescent in solid state, at room temperature (RT) and at 77?K, or in frozen DMSO solutions with lifetimes in the microsecond range and probably due to the self-aggregation of [Au(2)M(μ-mes)(2)(μ-LL)](+) units (M=Ag or Cu; LL=dppe or dppy) into an extended chain structure, through Au-Au and/or Au-M metallophilic interactions, as that observed for 3a. In solid state the heterometallic Au(2)M complexes with dppe (2a-4a) show a shift of emission maxima (from ca. 430 to the range of 520-540?nm) as compared to the parent dinuclear organometallic product 1a while the complexes with dppy (2b-4b) display a more moderate shift (505 for 1b to a max of 563?nm for 4b). More importantly, compound [Au(2)Ag(μ-mes)(2)(μ-dppy)]ClO(4) (2b) resulted luminescent in diluted DMSO solution at room temperature. Previously reported compound [Au(2)Cl(2)(μ-LL)] (LL dppy 5b) was also studied for comparative purposes. The antimicrobial activity of 1-5 and Ag[A] (A=ClO(4)(-), SO(3)CF(3)(-)) against gram-positive and gram-negative bacteria and yeast was evaluated. Most tested compounds displayed moderate to high antibacterial activity while heteronuclear Au(2)M derivatives with dppe (2a-4a) were the more active (minimum inhibitory concentration 10 to 1?μg?mL(-1)). Compounds containing silver were ten times more active to gram-negative bacteria than the parent dinuclear compound 1a or silver salts. Au(2)Ag compounds with dppy (2b, 3b) were also potent against fungi.  相似文献   

13.
The bichromophoric system Ru-Ru(C)-PI ([(bpy)3Ru-Ph-Ru(dpb)(Metpy-PI)][PF6]3, where bpy is 2,2'-bipyridine, Hdpb is 1,3-di(2-pyridyl)-benzene, Metpy is 4'-methyl-2,2':6',2' '-terpyridine and PI is pyromellitimide) containing two Ru(II) polypyridyl chromophores with a N6 and a N5C ligand set, respectively, was synthesized and characterized. Its photophysical properties were investigated and compared to those of the monochromophoric cyclometalated complexes Ru(C)-PI ([Ru(dpb)(Metpy-PI)][PF6]), Ru(C)-phi-PI ([Ru(dpb)(ttpy-PI)][PF6], ttpy is 4'-p-tolyl-2,2':6',2' '-terpyridine), Ru(C)-phi ([Ru(dpb)(ttpy)][PF6]), and Ru(C) ([Ru(dpb)(Metpy)][PF6]). Excitation of the Ru(C) unit in the dyads leads to oxidative quenching, forming the Ru(C)(III)-phi-PI*- and Ru(C)(III)-Pl.- charge-separated (CS) states with k(f)(ET) = 7.7 x 10(7) s(-1) (CH3CN, 298 K) in the tolyl-linked Ru(C)-phi-PI and k(f)(ET) = 4.4 x 10(9) s(-1) (CH2Cl2, 298 K) in the methylene-linked Ru(C)-PI. In the Ru-Ru(C)-PI triad, excitation of the Ru(C) chromophore leads to dynamics similar to those in the Ru(C)-PI dyad, generating the Ru(II)-Ru(C)(III)-PI*- CS state, whereas excitation of the Ru unit results in an initial energy transfer (k(EnT) = 4.7 x 10(11) s(-1)) to the cyclometalated Ru(C) unit. Subsequent electron transfer to the PI acceptor results in the formation of the same Ru(II)-Ru(C)(III)-PI*- CS state with k(f)(ET) = 5.6 x 10(9) s(-1) that undergoes rapid recombination with k(b)(ET) = 1 x 10(10) s(-1) (CH2Cl2, 298 K). The fate of the Ru(II)-Ru(C)(III)-PI*- CS state upon a second photoexcitation was studied by pump-pump-probe experiments in an attempt to detect the fully charge-separated Ru(III)-Ru(C)(II)-PI*- state.  相似文献   

14.
Luminescent cyclometalated iridium complexes based on pyridyl appended dipyrrin ligands were prepared and characterized both in the solid state and in solution. The functionalization of the peripheral pyridyl moiety causes dramatic changes on the emission properties of both mono- and hetero- binuclear complexes. A detailed photophysical investigation of the two mononuclear derivatives of the [(Ppy)(2)Ir(dpm-py)] family (Ppy=2-phenylpyridine, dpm-py=5-(4-pyridyl)dipyrrin) was carried out. Introduction of methyl groups at the 3 and 5?positions on the pyridyl unit diminishes the non-radiative rate constant by locking the peripheral pyridyl group orthogonally to the dipyrrinato plane. Thus, they limit the rotational degree of freedom, as well as the charge-transfer character of the excited state. The coordination of these two complexes to a cyclometalated [(dppy)Pt] fragment (dppy=2,6-diphenylpyridine) led to the formation of binuclear species in which the iridium and platinum complexes behave as acceptors and donors, respectively. In these heterobinuclear compounds, the methyl groups do not influence the energy transfer efficiency, which is estimated to be above 90?%. However, they do limit the charge-transfer character of the acceptor's excited state, as well as its rotational degree of freedom, thus avoiding the detrimental effect upon the photophysical performance.  相似文献   

15.
The treatment of binuclear complexes [Cp*(2)M(2)(μ-QA)Cl(2)] (M = Ir, 2a; M = Rh, 2b) (H(2)QA = 1,4-dihydroxyanthraquinone) with pyrazine or bifuncational pyridyl-based ligands (4,4'-dipyridine (bpy), E-1,2-bis(4-pyridyl)ethene (bpe), 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (bpo), and 2,5-bis(4-pyridyl)-1,3,4-thiadiazol (bpt)) in the presence of AgOTf (OTf = CF(3)SO(3)) in CH(3)OH, gave the corresponding tetra-nuclear complexes, with a general formula of [Cp*(4)M(4)(μ-QA)(2)(μ-L)(2)](OTf)(4) (M = Ir, 3a-7a; M = Rh, 3b-7b), respectively. The molecular structure of [Cp*(4)Ir(4)(μ-QA)(2)(μ-pyrazine)(2)](OTf)(4) (3a) has been determined by single-crystal X-ray analysis, revealing that the metal centers were connected by pyrazine and bis-bidentate QA(2-) ligands to construct a rectangular cavity with the dimension of 7.30 × 8.41 × 6.92 ?. Complexes 3a and 3b were found to exhibit selective trapping of halocarbons properties.  相似文献   

16.
Reaction of copper(I) acetate and 4-amino-3,5-di(2-pyridyl)-1,2,4-triazole (adpt) in methanol under ambient conditions yields octanuclear [Cu(II)(8)(dpt)(4)(OH)(4)(OAc)(8)]; OAc = acetate anion, and dpt(-) = anion of deaminated adpt, 3,5-di(2-pyridyl)-1,2,4-triazolate. However, reaction of copper(ii) acetate with dptH gives tetranuclear [Cu(II)(4)(dpt)(2)(OH)(OMe)(OAc)(4)].  相似文献   

17.
A silver-based metal-organic framework(Ag-MOFs), [Ag2(H3 ddcba)(dpp)2](1)(H5 ddcba = 3,5-(di(2',5'-dicarboxylphenyl)benozoic acid, dpp = 1,3-di(4-pyridyl)propane), was successfully constructed via hydrothermal assembly of a pentacaboxylate ligand, a N-donor ligand and Ag(I) ions, which possesses a pcu topology and exhibits excellent catalytic properties in aqueous solution for the degradation of onitrophenol(2-NP), m-nitrophenol(3-NP) and p-nitrophenol(4-NP). Related kinetics of such catalytic reactions, photoluminescent and thermal stability of compound 1 were also investigated.  相似文献   

18.
The coordination polymer [Ni(dpa)(bpp)]n(H2dpa = 2,4'-biphenyl-dicarboxylic acid,bpp = 1,3-di(4-pyridyl)propane) was hydrothermally prepared and characterized by single-crystal X-ray diffraction,FTIR spectra,elemental analysis and thermal analysis.The crystal is of triclinic system,space group P1 with a = 12.516(5),b = 12.943(5),c = 15.130(5) ,α = 94.331(5),β = 91.827(5),γ = 108.382(5)°,C54H44N4Ni2O8,Mr = 497.18,V = 2315.3(15) 3,Dc = 1.426 g/cm3,F(000) = 1032,μ = 0.875 cm-1,Z = 2,the final R = 0.0496 and wR = 0.1100 for 5365 reflections with Ⅰ 2σ(Ⅰ).X-ray diffraction analysis reveals that the carboxylate group of 2,4'-diphenic acids acting as bridging ligands adopts two coordination modes:bis-mondentate and bidentate chelating.The compound exhibits a two-dimensional(6,3)-connected architecture.  相似文献   

19.
Reaction of [Cp*Ir(micro-H)](2) (5) (Cp* = eta(5)-C(5)Me(5)) with bis(dimethylphosphino)methane (dmpm) gives a new neutral diiridium complex [(Cp*Ir)(2)(micro-dmpm)(micro-H)(2)] (3). Treatment of 3 with methyl triflate at -30 degrees C results in the formation of [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Me)(IrCp*)][OTf] (6). Warming a solution of above 0 degrees C brings about predominant generation of 32e(-) Ir(II)-Ir(II) species [(Cp*Ir)(micro-dmpm)(micro-H)(IrCp*)][OTf] (7). Further heating of the solution of 7 up to 30 degrees C for 14 h leads to quantitative formation of a new complex [(Cp*Ir)(H)(micro-Me(2)PCH(2)PMeCH(2))(micro-H)(IrCp*)][OTf] (8), which is formed by intramolecular oxidative addition of the methyl C-H bond of the dmpm ligand. Intermolecular C-H bond activation reactions with 7 are also examined. Reactions of 7 with aromatic molecules (benzene, toluene, furan, and pyridine) at room temperature result in the smooth sp(2) C-H activation to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Ar)(IrCp*)][OTf] (Ar = Ph (9); Ar = m-Tol (10a) or p-Tol (10b); Ar = 2-Fur (11)) and [(Cp*Ir)(H)(micro-dmpm)(micro-C(5)H(4)N)(H)(IrCp*)][OTf] (12), respectively. Complex also reacts with cyclopentene at 0 degrees C to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(1-cyclopentenyl)(IrCp*)][OTf] (13). Structures of 3, 8 and 12 have been confirmed by X-ray analysis.  相似文献   

20.
A new terpyridyl-containing Pt triad [Pt(pytpy)(p-CC-C6H4-NH-CO-C6H2(OMe)3)](PF6)2 (4), where pytpy = 4'-(4-pyridin-1-ylmethylphenyl)-[2,2';6',2' ']terpyridine and p-CC-C6H4-NH-CO-C6H2(OMe)3 = N-(4-ethynylphenyl)-3,4,5-trimethoxybenzamide, has been synthesized and structurally characterized. The related donor-chromophore dyad [Pt(ttpy)(p-CC-C6H4-NH-CO-C6H2(OMe)3)]PF6 2, where ttpy = 4'-p-tolyl-[2,2';6',2' ']terpyridine, and the chromophore-acceptor dyad [Pt(pytpy)(CCC6H5)](PF6)2 (3), where CCC6H5 = ethynylbenzene, have also been studied. The multistep syntheses culminate with a CuI-catalyzed coupling reaction of the respective acetylene with either [Pt(ttpy)Cl]PF6 or [Pt(pytpy)Cl](PF6)2. X-ray and spectroscopic studies support assignment of a distorted square planar environment around the Pt(II) ion with three of its coordination sites occupied by the terpyridyl N-donors and the fourth coordination site occupied by the acetylenic carbon. Although the parent compound [Pt(ttpy)(CCC6H5)]PF6 (1) is brightly luminescent in fluid solution at 298 K, dyad 2 as well as triad 4 exhibit complete quenching of the emission. The chromophore-acceptor (C-A) dyad 3 displays weak solution luminescence at room temperature with a phi(rel)(em) of 0.011 (using Ru(bpy)3(2+) as a standard with phi(rel)(em) = 0.062). Electrochemically, the donor-chromophore (D-C) dyad and the donor-chromophore-acceptor (D-C-A) triad exhibit both metal-based and donor ligand-based oxidations, whereas the triad and the C-A dyad show the expected pyridinium- and terpyridine-based reductions. Transient absorption studies of the dyad and triad systems indicate that although the trimethoxybenzene group acts as a reductive donor, in the present system, the pyridinium group fails to act as an acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号