首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present methods for the determination of UVA-induced binding of 8-methoxypsoralen (8-MOP) to nucleic acids and protein and for a quantitative assay of radioactively labelled 8-MOP plus UVA induced DNA photoproducts in the yeast Saccharomyces cerevisiae. For the dose range up to 60 kJ m-2, with a wild-type survival of 1% or higher, binding to DNA is 100-fold and to RNA 10- to 20-fold more efficient than that to protein. Between 20% and 65% of the 8-MOP binds to macromolecules that are neither nucleic acids nor protein. The number of DNA-bound 8-MOP molecules for the haploid genome rises from 14 (unirradiated control) to 349 at the highest UVA exposure dose (60 kJ m-2). Gel chromatography reveals three types of DNA thymine photoproduct, the pyrone-side monoadducts, the furan-side monoadducts and the diadducts. Among these, pyrone-side monoadducts always constitute the smallest fraction, regardless of whether the treatment is with in vitro or in vivo 8-MOP plus UVA.  相似文献   

2.
Extracts of Hypericum perforatum (St. John's wort) are used in the treatment of depression. They contain the plant pigment hypericin and hypericin derivates. These compounds have light-dependent activities. In order to estimate the potential risk of phototoxic skin damage during antidepressive therapy, we investigated the phototoxic activity of hypericin extract using cultures of human keratinocytes and compared it with the effect of the well-known phototoxic agent psoralen. The absorbance spectrum of our Hypericum extract revealed maxima in the whole UV range and in parts of the visible range. We cultivated human keratinocytes in the presence of different Hypericum concentrations and irradiated the cells with 150 mJ/cm2 UVB, 1 J/cm2 UVA or 3 h with a white light of photon flux density 2.6 mumol m-2 s-1. The determination of the bromodeoxyuridine incorporation rate showed a concentration- and light-dependent decrease in DNA synthesis with high hypericin concentrations (> or = 50 micrograms/mL) combined with UVA or visible light radiation. In the case of UVB irradiation a clear phototoxic cell reaction was not detected. We found phototoxic effects even with 10 ng/mL psoralen using UVA with the same study design as in the case of the Hypericum extract. These results confirm the phototoxic activity of Hypericum extract on human keratinocytes. However, the blood levels that are to be expected during antidepressive therapy are presumably too low to induce phototoxic skin reactions.  相似文献   

3.
The phototoxicity of two new porphyrin photosensitizers, diarginine diprotoporphyrinate (PP(Arg)2) and N,N-diphenylalanyl protoporphyrin (PP(Phe)2), and the synergistic effect of 5-methoxyposralen (5-MOP) have been studied in comparison with that of protoporphyrin IX (PPIX). Under ultraviolet-A (UV-A) irradiation (lambda=365 nm), the phototoxicity of the porphyrins toward cultured human fibroblasts and keratinocytes decreases in the order: PPIX > PP(Arg)2 > PP(Phe)2. A synergistic effect of 5-MOP on the phototoxicity of PPIX, PP(Arg)2 and PP(Phe)2 has been observed. The combination of PPIX, PP(Arg)2 and PP(Phe)2 with 0.1-0.5 microM 5-MOP significantly potentiates the phototoxicity of the three porphyrins. The most effective potentiation was observed with the water-soluble PP(Arg)2 and 5-MOP concentrations lower than 0.75 microM. Above this 5-MOP concentration this potentiation is abolished. The intracellular concentration of PPIX and PP(Phe)2 is independent of the presence of 5-MOP. On the other hand, the intracellular content of PP(Arg)2 is decreased in a concentration-dependent manner by the psoralen. Illumination with red light, not absorbed by 5-MOP, leads to a weak potentiation of the PP(Arg)2 phototoxic effect in the presence of 5-MOP, suggesting that dark interaction of 5-MOP with cell membranes aggravated by porphyrin photosensitization is involved in the observed phenomena. The results are tentatively explained by differences in hydrophobicity and molecular structures of the examined photosensitizers. PPIX, which is barely soluble in water, has a significantly higher affinity for cell membranes and simultaneously exerts a stronger phototoxic effect than PP(Arg)2 whose solubility in water is high. On the other hand, the weak phototoxicity of PP(Phe)2 could be explained by the steric hindrance brought by the phenylalanyl substituents on the pyrrole ring. The loss in the PP(Arg)2 cell content probably explains the inhibition of the synergistic effect of 5-MOP on the PP(Arg)2 phototoxicity at high 5-MOP concentration. This study suggests that PP(Arg)2 in combination with 5-MOP might reveal a strong phototoxic effect when applied to skin cancer treatment.  相似文献   

4.
The phototoxicities of six metalloporphyrin dimethylesters (i.e. cobalt (Co), copper (Cu), manganese (Mn), nickel (Ni), tin (Sn) and zinc (Zn) were investigated. Hemolysis of human erythrocytes and inactivation of two enzymes (acetylcholinesterase and beta-galactosidase) were used to assess the phototoxic efficacy of these metal chelates. Tin protoporphyrin (SnPP), the only porphyrin found to hemolyze erythrocytes at a concentration of 40 microM (radiation dose, 230 kJ m-2), was much less efficient than either free protoporphyrin IX or hematoporphyrin. SnPP completely inactivated beta-galactosidase at concentrations above 15 microM (radiation dose, 75 kJ m-2) and drastically interfered with acetylcholinesterase activity at a concentration of 150 microM (radiation dose, 75 kJ m-2). CoPP, CuPP, MnPP, NiPP and ZnPP were ineffective photohemolytic agents at 40 microM (radiation dose, 230 kJ m-2), but inactivated acetylcholinesterase and beta-galactosidase activity to varying degrees. These results suggest that (i) metal ions reduce the phototoxicity of protoporphyrin IX, (ii) different metal ions reduce the phototoxic activity of protoporphyrin IX to different degrees and (iii) the biological activities of the various metal complexes vary in different assay systems.  相似文献   

5.
A comparative study of the cellular photosensitizing properties of protoporphyrin IX (PpIX) and photoprotoporphyrin (Ppp) was carried out in the transformed murine keratinocyte cell line, PAM 212. Time-course fluorescence studies were performed to determine the rate of uptake by cells together with fluorescence microscopy. The sensitized cells were laser irradiated with a range of light doses at 635 or 670 nm to determine the phototoxicity of the two compounds and to investigate their relative fluorescence photobleaching properties. Ppp showed enhanced phototoxicity at both its optimal activation wavelength of 670 nm (eight times more phototoxic than PpIX activated at its optimal wavelength of 635 nm for the same fluence) and at 635 nm (three times more phototoxic than PpIX at the same wavelength), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The photobleaching rate of Ppp in cells was found to be higher using 670 nm irradiation compared with that of PpIX at 635 nm irradiation. At 635 nm, however, the photobleaching rate of Ppp was comparable to that of PpIX. The photobleaching quantum yields of the two compounds in cells were found to be similar at approximately 5 x 10(-4), with the same value confirmed at both 670 and 635 nm irradiation for Ppp. The fluorescence lifetime of Ppp in cells was measured as 5.4 ns using time-correlated single photon counting.  相似文献   

6.
The cyanine photosensitizer, lumin, is a potent macrophage activating agent: 4 days after administration of small amounts of lumin to mice (20-40 ng mouse-1), peritoneal macrophages exhibited a greatly enhanced Fc-mediated ingestion activity; higher doses (more than 3000 ng mouse-1) did not have this effect. The in vitro photodynamic activation of macrophages in mouse peritoneal cells exposed to white fluorescent light (3 J m-2 s-1) was also studied in media containing various concentrations of lumin. A short light exposure (45 J m-2) with 10 ng lumin ml-1 produced a maximum ingestion activity of macrophages. Lumin has absorption peaks at 670 and 760 nm. Therefore we designed experiments in which peritoneal cells were exposed to a red fluorescent light (emission, 660 nm; 0.5 J m-2 s-1). In a medium containing 3 ng lumin ml-1 with 7.5 J m-2 of red light, a markedly enhanced ingestion activity of macrophages was observed. The photodynamic treatment of peritoneal macrophages alone did not stimulate phagocytic activity, but the photodynamic treatment of a mixture of non-adherent (B and T) cells and macrophages resulted in a greatly enhanced ingestion activity of macrophages. Thus non-adherent cells are required for the photodynamic activation of macrophages, implying that an activating factor is generated within the non-adherent cells and transmitted to the macrophages. This hypothesis was confirmed by the observation that co-cultivation of photodynamically treated non-adherent cells with untreated macrophages resulted in a greatly enhanced ingestion capacity.  相似文献   

7.
Thioridazine is a phenothiazine derivative that has been used as an antipsychotic; it rarely causes photosensitization. However, we noticed that this drug induced an erythematous reaction in a photopatch test. Six volunteers were patch tested with various concentrations of thioridazine and irradiated with a range of UVA doses, and the time courses of the color of and blood flow to the test sites were monitored. The free-radical metabolites of thioridazine generated under UVA irradiation and its effects on ascorbate radical formation were examined with an electron paramagnetic resonance (EPR) spectrometer in vitro. As a result, immediate erythema developed during UVA irradiation in most subjects when 1% thioridazine was applied for 48 h and irradiation doses were higher than 4 J cm(-2). Another peak of erythematous reaction was observed 8-12 h after irradiation. The in vitro examination detected an apparent EPR signal, which appeared when 2 mM thioridazine in air-saturated phosphate buffer was irradiated with UVA, whereas this reaction was attenuated under anaerobic conditions. The EPR signal of the ascorbate radical was augmented under both aerobic and anaerobic conditions. Thioridazine-derived oxidants and/or thioridazine radicals generated during UVA irradiation seem to play an important role in this unique phototoxic reaction.  相似文献   

8.
Abstract Citral, a monoterpene aldehyde synthesized by several plant families, was recently shown to exhibit ultraviolet A light (320–400 nm) (UVA)-enhanced oxygen-dependent toxicity against bacteria and fungi ( Escherichia coli and Fusarium species). In this study, we report for the first time that citral is phototoxic to insects; at concentrations of 300 ppm in artificial diet, mortality of first instar Trichoplusia ni (cabbage loopers) approached 30% after 120 h of UVA exposure, approximately double the mortality level in the absence of UVA. At 300 ppm, the antioxidant vitamin A reduces citral phototoxicity by about 50% in this species, suggesting that citral phototoxicity against insects is oxygen dependent.  相似文献   

9.
Abstract Tiaprofenic acid is a photosensitizing nonsteroidal anti-inflammatory drug, whose major photoproduct (decarboxytiaprofenic acid) is also a potent photosensitizer. Because of the lack of the carboxylate moiety, this photoproduct is more lipophilic and might bind more efficiently to cell membranes, thereby causing phototoxic damage. To verify the feasibility of this hypothesis, we have prepared the 3H-labeled analogs of tiaprofenic acid and its photoproduct and examined the binding, persistence and phototoxicity of the photoproduct using poorly metabolizing (fibroblasts) and actively metabolizing cells (hepatocytes). The photoproduct of tiaprofenic acid accumulates in both cell types as it is formed. Upon removal of the photoproduct from the culture medium, it rapidly disappears from hepatocytes but not from fibroblasts. Consequently, irradiation of fibroblasts previously incubated with the photoproduct and kept in culture in the dark for 20 h results in generalized cell damage while this effect is not observed in hepatocytes. Because of its long persistence in poorly metabolizing skin cells and its reluctance to photobleaching, the formation of this photoproduct in skin may be of relevance to explain the in vivo phototoxicity of tiaprofenic acid.  相似文献   

10.
The ultraviolet A (UVA) radiation component of sunlight (320-400 nm) has been shown to be a source of oxidative stress to cells via generation of reactive oxygen species. We report here some consequences of the UVA irradiation on cell membranes detected by electron paramagnetic resonance (EPR) spectroscopy. Paramagnetic nitroxide derivatives of stearic acid bearing the monitoring group at different depths in the hydrocarbon chain were incorporated into human fibroblasts membranes to analyze two main characteristics: kinetics of the nitroxide reduction and membrane fluidity. These two characteristics were compared for control and UVA-irradiated (0-250 kJ/m(2)) cells. The term relative redox capacity (RRC) was introduced to characterize and to compare free radical reduction measured by EPR with some well-known viability/clonogenicity tests. Our results showed that UVA-irradiation produces a more rigid membrane structure, especially at higher doses. Furthermore, we found that trends agree in survival measured by neutral red (NR), trypan blue (TB), and clonogenic efficiency compared with RRC values measured by EPR for low and medium exposure doses. Above 100 kJ/m(2), differences between these tests were observed. Antioxidant effect was modeled by alpha-tocopherol-acetate treatment of the cells before UVA irradiation. While NR, TB and clonogenicity tests showed protection at the highest UVA doses (>100 kJ/m(2)), results obtained with EPR measurements, both membrane fluidity and kinetics, or using MTT test did not exhibit this protective effect.  相似文献   

11.
Abstract Benoxaprofen (2-[4-chlorophenyl]-α-methyl-5-benzoxazole acetic acid), a non-steroidal antiinflammatory drug, was found to provoke phototoxicity reactions in humans. Exposure of the skin of benoxaprofen-treated subjects to either solar simulating radiation or a broad UV-A wavelength band produced intense itching and burning sensations, followed by the development of a classical wheal and flare response within 2-4 min. Phototoxicity was related to both the UV radiation fluence and the dose of orally administered benoxaprofen. Wavelengths between 320 and 340nm were active in provoking urticaria. In vitro studies demonstrated that benoxaprofen and UV irradiation produced a dose-dependent lysis of sheep erythrocytes which did not appear to be dependent on the presence of oxygen. Red cells were not lysed by pre-irradiated benoxaprofen arguing against the production of stable lytic photoproducts. Human neutrophils were lysed by benoxaprofen and UV light which resulted in the liberation of both cytoplasmic and lysosomal enzymes. Benoxaprofen failed to induce photolysis of human platelets and photoactivation of complement in human serum. It is suggested that phototoxic urticaria provoked by benoxaprofen may be due to a direct photolytic effect on human dermal mast cells.  相似文献   

12.
Abstract— Sterols are important lipid components that may contribute to phototoxicity. We have found that phototoxic response in earthworms is related to sterols extractable with lipophilic solvents. The photochemically active compounds in worm lipids are 5,7,9(11),22-ergostatetraen-3bT-ol (9-DHE) and 5,7,9(11)-cholestatrien-3bT-ol (9-DDHC), respectively. Human skin lipids are known to contain 9-DHE. We have also found 9-DDHC in human skin, which is reported here for the first time. In the presence of an excess of the corresponding 5,7-dienes (ergosterol or 7-dehydrocholesterol), these photoactive sterols constitute a self-regenerating source of singlet molecular oxygen (1O2) during irradiation in vivo or in vitro with UVA bT15-400 nm). The quantum yield for photosensitization of 1O2 by 9-DHE was estimated to be 0.09. The 1O2 is scavenged by the dienes and the rate constant for 1O2 quenching by ergosterol was found to be 1.2 times 107 M -1 s-1 in methyl t-butyl ether (MTBE). This scavenging ultimately leads to the production of 5,8-endo-peroxide and hydrogen peroxide. Photochemically induced superoxide radical was also produced on irradiation of sterol 5,7,9-trienes and trapped with the spin trap 5,5-dimeth-yl-1-pyrroline W-oxide (DMPO). The production of singlet oxygen, peroxides and radicals by the sterols may be significant in the cell damaging and tumor promoting action of UVA light on skin.  相似文献   

13.
The dried root or rhizome of Goldenseal (Hydrastis canadensis L.) contains several alkaloids including berberine, hydrastine, palmatine and lesser amounts of canadine and hydrastinine. Preparations derived from Goldenseal have been used to treat skin and eye ailments. Berberine, the major alkaloid in Goldenseal root powder, has been used in eye drops to treat trachoma, a disease characterized by keratoconjunctivitis. Berberine and palmatine are also present in extracts from Berberis amurensis Ruprecht (Berberidaceae) which are used to treat ocular disorders. We have previously shown that Goldenseal alkaloids are phototoxic to keratinocytes (Chem Res Toxicol. 14, 1529, 2001; ibid 19, 739, 2006) and now report their effect on human lens and retinal pigment epithelial cells. Human lens epithelial cells (HLE-B3) were severely damaged when incubated with berberine (25 microM) and exposed to UVA (5 J cm(-2)). Under the same conditions, palmatine was less phototoxic and hydrastine, canadine and hydrastinine were inactive. Moderate protection against berberine phototoxicity was afforded by the antioxidants ascorbate (2 mM) and N-acetylcysteine (5 mM). When exposed to UVA (5 J cm(-2)) both berberine (10 microM) and palmatine (10 microM) caused mild DNA damage as determined by the alkaline comet assay which measures single strand breaks. Berberine and palmatine are the only Goldenseal alkaloids with appreciable absorption above 400 nm. Because light at wavelengths below 400 nm is cut off by the anterior portion of the adult human eye only berberine and palmatine were tested for phototoxicity to human retinal pigment epithelial (hRPE) cells. Although berberine did damage hRPE cells when irradiated with visible light (lambda > 400 nm) approximately 10 times higher concentrations were required to produce the same amount of damage as seen in lens cells. Palmatine was not phototoxic to hRPE cells. Neither berberine nor palmatine photodamaged DNA in hRPE. Infusions of Goldenseal are estimated to contain approximately 1 mM berberine, while in tinctures the alkaloid concentration may be more than 10 times higher. Our findings show that eyewashes and lotions derived from Goldenseal or containing berberine must be used with caution when the eyes are exposed to bright sunlight but that oral preparations are not likely to cause ocular phototoxicity.  相似文献   

14.
The present study investigates the photochemical properties of a potential photosensitiser, indocyanine green (ICG), in an in vitro HeLa cell system. Cell proliferation was studied after a combined effect of ICG, at a concentration range of 24-94 microM, and therapeutic laser irradiation at several different energy densities. In addition, ICG cytotoxicity was evaluated in HeLa cells and V79 Chinese hamster by the MTT assay. Phototoxicity was evaluated at 1, 24, and 48 h after irradiation. No phototoxic effect was detected 1h after irradiation. The maximum phototoxic effect of ICG on HeLa cells was detected for an ICG concentration of 94 microM, a laser output of 360 mW, and an energy density of 99 J/cm(2) at 24h after irradiation. Potentiation of the ICG phototoxic effect was achieved by adding 20 microM H(2)O(2), which was a non-toxic concentration for HeLa cells in this experimental design. At 48 h after laser irradiation a statistically significant difference was found between the toxicity of ICG plus peroxide, as compared to ICG alone. The addition of H(2)O(2) at a concentration of 20 microM caused a significant increase in phototoxicity of ICG for HeLa cells. Our results confirm that ICG could be a perspective agent for use in photodynamic therapy and that its phototoxic effect can be potentiated by addition of an oxidative agent.  相似文献   

15.
The daily autumn and winter ultraviolet-A (320-400 nm) (UVA) exposures and 6 min UVA irradiance data for a southern hemisphere subtropical site (Toowoomba, Australia, 27.6 degrees S, 151.9 degrees E) are presented. This data is used to quantify the effect of cloud on UVA using an integrated sky camera and radiation system. Additionally, an estimate of the effect of enhanced UVA exposure on humans is made. The measurement system consisted of broad-band visible-infrared and UVA sensors together with a sun tracking, wide-angle video camera. The mean daily June exposure was found to be 409 kJ m-2. Under the constraints of the uncertainty of both the UVA measurement system and clear-sky model, one case of enhanced UVA irradiance was found. Three cases of cloud enhancement of daily UVA exposure, approaching clear-sky levels, were also determined using a calculated clear-sky envelope. It was also determined that for a fulltime outdoor worker the additional UVA exposure could approach approximately that of one third of a full winter's day. For indoor workers with an outside lunch break of 12:00-1:00 P.M. the additional UVA exposure was on an average 6.9 kJ m-2 over three cloud-enhanced days. To the authors' knowledge this is the first paper to present some evidence of cloud-enhanced UVA human exposure.  相似文献   

16.
To study the basis for the phototoxicity of quinolones, a class of synthetic antibacterials, the photodynamic ability to mediate 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG) formation in cultured cells was measured for lome-floxacin (LMX), which is strongly associated with clinical phototoxicity in humans, and ciprofloxacin (CFX), which has few reports of phototoxicity. Adult rat liver (ARL-18) cells were exposed to the quinolones in the presence of UVA and DNA was extracted and analyzed by HPLC with electrochemical detection. Low levels of 8-oxo-dG were found in the DNA of nonirradiated ARL-18 cells and this was increased up to 6-fold in the presence of either LMX (50–400 uAf) or up to 3.6-fold in the presence of CFX (50–400 µM) and UVA (20 J/cm2) when compared to the UVA control. Comparing separate experiments with LMX and CFX, LMX produced greater levels of 8-oxo-dG either after dark exposure or after UVA exposure at 20 J/cm2. Also, LMX and CFX were both shown to photodegrade in the presence of UVA, and it was determined that UVA photoinstability alone does not reflect phototoxic potential. These data suggest that the photodynamic potential of LMX and CFX to produce 8-oxo-dG may relate to their human clinical phototoxicity profile. We suggest that the observed clinical phototoxicity is mediated through a UVA photodynamic effect on the quinolone to form reactive oxygen species in the presence of molecular oxygen. The findings indicate that 8-oxo-dG formation can serve as a marker for the potential phototoxicity of new quinolones.  相似文献   

17.
It has been previously shown that a metabolite of piroxicam but not piroxicam itself causes phototoxicity to cells in vitro after exposure to UVA (320–400 nm) radiation. The phototoxicity mechanism for this metabolite, 2-methyl-4-oxo-2H-l,2-benzothiazine-l,l-dioxide (Compound I), was investigated. In vitro phototoxicity to human mononuclear cells was assayed using 0.5 m M Compound I and UVA radiation. The UVA fluence required for phototoxicity of Compound I was lower by a factor of 2-3 in D2O buffer compared to H2O buffer. Superoxide dismutase and mannitol, which remove O2- and OH", respectively, do not decrease the phototoxicity. The photodecomposition of Compound I was inhibited by sodium azide, enhanced by human serum albumin and unaffected by mannitol. Stable photoproducts of Compound I were not toxic to the cells. The quantum yield of singlet oxygen based on its emission at 1270 nm was 0.19 and 0.35 for Compound I and s2 ± 10-3 and 10-2 for piroxicam in D2O and C6H6, respectively. While the extremely low quantum yield for singlet oxygen from piroxicam appears to account for its lack of phototoxicity, the phototoxicity mechanism for its metabolite, Compound I, most likely does involve singlet oxygen.  相似文献   

18.
Double-stranded, covalently closed, supercoiled circular DNA from phage fd (replicative form) was irradiated with increasing doses of UV light at 254 nm, 290 nm, 313 nm and 365 nm, and subjected to electrophoresis on agarose slab gels. Increasing the doses of UV light at 254 and 290 nm promotes a smooth reduction in the electrophoretic mobility of the sample, as would be expected if the major effect of light at these two wavelengths were to induce the formation of photoproducts leading to the unwinding of the double strand. At high doses, UV light at 290 nm introduces single-strand breaks (1.2 kJ m-2 per nick per million phosphodiester bonds). UV light at 313 nm promotes an abrupt change in the electrophoretic mobility, as would be expected if the effect of this wavelength were to induce single-strand breaks, leading to the transformation of the supercoiled molecules in their relaxed form (23 kJ m-2 in order to introduce one nick per million phosphodiester bonds). UV light at 365 nm also promotes single-strand breaks in DNA (140 kJ m-2 per nick per million phosphodiester bonds).  相似文献   

19.
Abstract Eight compounds present in crude coal tar were tested for phototoxicity on guinea-pig skin. Four concentrations (5 μM to 5 mM) of each compound in ethanol were applied to the dorsal surface of 6 guinea-pigs. Each animal received 1.0 x 105 j/m2 of UVA radiation. The erythematous (phototoxic) response was evaluated after 20 h. Pyrene, anthracene and fluoranthene were strongly phototoxic. Acridine was markedly less phototoxic. Action spectra based on erythema as an endpoint were determined in guinea-pigs for anthracene, pyrene and fluoranthene. Each compound was applied to 5 animals which received irradiations from 274 to 502 nm in 12 nm bands for 3, 6, 9, 12 and 15 min. The maximum erythema response to anthracene was observed between 346 and 382 nm, to fluoranthene between 322 and 382 nm and to pyrene between 322 and 358 nm.  相似文献   

20.
9-Acetoxy-2,7,12,17-tetrakis-(beta-methoxyethyl)-porphycene (ATMPn) is a promising new photosensitizer characterized by high absorption around 640 nm and high singlet oxygen yield. To study the mechanism of action in vitro we have investigated uptake, intracellular localization, cell survival and ultrastructural changes following photodynamic treatment in human cell lines derived from the skin (SCL1 and SCL2, squamous cell carcinoma; HaCaT keratinocytes; N1 fibroblasts). Using flow cytometry we have determined the cellular fluorescence as a marker for the uptake of ATMPn after incubation for 60 min. Co-staining with ATMPn and fluorescent dyes specific for cell organelles reveals an intracellular localization of ATMPn in lysosomes. Following irradiation using an incoherent light source (580-740 nm) and a light fluence of 24 J cm-2, phototoxicity is determined by means of the 3-4.5 dimethylthiazol-2,5 diphenyl tetrazolium bromide (MTT) assay. For all cell lines ATMPn concentrations above 15 nM yield a significant phototoxic effect. The 50% effective concentration, EC50, for SCL1 cells is 11.2 +/- 2.9 nM ATMPn. ATMPn uptake and phototoxicity are more effective for HaCaT and SCL1 as compared to SCL2 and N1 cells. Growth curves confirmed the results of the MTT assay. Because of the high lysosomal accumulation of ATMPn, already low photosensitizer concentrations without dark toxicity yield a high photodynamic effect. Immunofluorescence and electron microscopy reveal damage to tonofilaments, plasma membrane and mitochondria, indicating a mechanism unrelated to apoptosis. A dose yielding complete cell killing, as needed for oncological indications, might lead to necrosis, whereas lower sub-lethal doses result in induction of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号