首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present various inequalities for the error function. One of our theorems states: Let α?≥?1. For all x,y?>?0 we have $$ \delta_{\alpha} < \frac{ \mbox{erf} \left( x+ \mbox{erf}(y)^{\alpha}\right) +\mbox{erf}\left( y+ \mbox{erf}(x)^{\alpha}\right) } {\mbox{erf}\left( \mbox{erf}(x)+\mbox{erf}(y)\right) } < \Delta_{\alpha} $$ with the best possible bounds $$ \delta_{\alpha}= \left\{ \begin{array}{ll} 1+\sqrt{\pi}/2, & \ \ \textrm{{if} $\alpha=1$,}\\ \sqrt{\pi}/2, & \ \ \textrm{{if} $\alpha>1$,}\\ \end{array}\right. \quad{\mbox{and} \,\,\,\,\, \Delta_{\alpha}=1+\frac{1}{\mbox{erf}(1)}.} $$   相似文献   

2.
Let $p>1$ . We study the behavior of certain positive and nodal solutions of the problem $$\begin{aligned} \left\{ \,\, \begin{array}{lll} -\Delta _p u=\lambda |u|^{q-2}u \ \ &{}\mathrm{in} \ \ &{}{\varOmega } \\ u=0 &{}\mathrm{in} \ \ &{}\partial {\varOmega } \end{array}\right. \end{aligned}$$ on varying of the parameters $\lambda >0$ and $q>1$ .  相似文献   

3.
This paper is concerned with power concavity properties of the solution to the parabolic boundary value problem $$\begin{aligned} (P)\quad \left\{ \begin{array}{l@{\quad }l} \partial _t u=\varDelta u +f(x,t,u,\nabla u) &{} \text{ in }\quad \varOmega \times (0,\infty ),\\ u(x,t)=0 &{} \text{ on }\quad \partial \varOmega \times (0,\infty ),\\ u(x,0)=0 &{} \text{ in }\quad \varOmega , \end{array} \right. \end{aligned}$$ where $\varOmega $ is a bounded convex domain in $\mathbf{R}^n$ and $f$ is a nonnegative continuous function in $\varOmega \times (0,\infty )\times \mathbf{R}\times \mathbf{R}^n$ . We give a sufficient condition for the solution of $(P)$ to be parabolically power concave in $\overline{\varOmega }\times [0,\infty )$ .  相似文献   

4.
In this paper we consider the problem $$\left\{ \begin{array}{ll} -\Delta u=u^p+\lambda u & \quad\hbox{ in }A,\\ u > 0&\quad \hbox{ in }A,\\ u=0 &\quad \hbox{ on }\partial A, \end{array}\right. $$ where A is an annulus of ${\mathbb{R}^N,N\ge2}$ and p?>?1. We prove bifurcation of nonradial solutions from the radial solution in correspondence of a sequence of exponents {p k } and for expanding annuli.  相似文献   

5.
Of concern is the nonlinear hyperbolic problem with nonlinear dynamic boundary conditions $$\left\{ \begin{array}{lll} u_{tt} ={\rm div} (\mathcal{A} \nabla u)-\gamma (x,u_t), && \quad {\rm in} \; (0, \infty) \times \Omega,\\ u(0, \cdot)=f, \, u_t(0,\cdot)=g, && \quad {\rm in}\; \Omega, \\ u_{tt} + \beta \partial^ \mathcal{A}_\nu u+c(x)u+ \delta (x,u_t)-q \beta \Lambda_{\rm LB} u=0,&& \quad {\rm on} \;(0, \infty ) \times \partial \Omega . \end{array}\right. $$ for t ≥  0 and ${x \in \Omega \subset \mathbb{R}^N}$ ; the last equation holds on the boundary . Here ${\mathcal{A}= \{a_{ij}(x)\}_{ij}}$ is a real, hermitian, uniformly positive definite N × N matrix; ${\beta \in C(\partial \Omega)}$ , with β > 0; ${\gamma:\Omega \times \mathbb{R} \to \mathbb{R}; \delta:\partial \Omega \times \mathbb{R} \to \mathbb{R}; \,c:\partial \Omega \to \mathbb{R}; \, q \ge 0, \Lambda_{\rm LB}}$ is the Laplace–Beltrami operator on , and ${\partial^\mathcal{A}_\nu u}$ is the conormal derivative of u with respect to ${\mathcal{A}}$ ; everything is sufficiently regular. We prove explicit stability estimates of the solution u with respect to the coefficients ${\mathcal{A},\,\beta,\,\gamma,\,\delta,\,c,\,q}$ , and the initial conditions fg. Our arguments cover the singular case of a problem with q = 0 which is approximated by problems with positive q.  相似文献   

6.
We consider the heat equation with a nonlinear boundary condition, $$(P) \left\{\begin{array}{ll} \partial_t u = \Delta u, & x \in \Omega, \quad t > 0, \\ \partial_\nu u=u^p, & x \in \partial \Omega,\quad t > 0,\\ u (x,0) = \phi (x),& x\in\Omega, \end{array}\right.$$ where ${\Omega = \{x = (x^{\prime},x_N) \in {\bf R}^{N} : x_N > 0\}, N \ge 2, \partial_t = \partial{/}\partial t , \partial_\nu = -\partial{/}\partial x_{N}}$ , p > 1 + 1/N, and (N ? 2)p < N. In this paper we give a complete classification of the large time behaviors of the nonnegative global solutions of (P).  相似文献   

7.
This paper is concerned with the multiplicity and concentration of positive solutions for the nonlinear Schr?dinger?CPoisson equations $$ \left\{ \begin{array}{l@{\quad}l} -\varepsilon^2\triangle u+V(x)u+\phi(x) u=f(u)& {\rm in}\,{\mathbb R}^3, \\ -\varepsilon^2\triangle \phi=u^2 & {\rm in}\,{\mathbb R}^3, \\ u\in H^1({\mathbb R}^3), u(x) > 0,& \forall x\in{\mathbb R}^3, \\ \end{array} \right. $$ where ???>?0 is a parameter, ${V: {\mathbb R}^3\rightarrow{\mathbb R}}$ is a continuous function and ${f: {\mathbb R}\rightarrow {\mathbb R}}$ is a C 1 function having subcritical growth. The proof of the main result is based on minimax theorems and the Ljusternik?CSchnirelmann theory.  相似文献   

8.
In this paper, we study the existence of infinitely many high energy solutions for the nonlinear Kirchhoff equations $$\left\{\everymath{\displaystyle}\begin{array}{l@{\quad}l}- \biggl(a+b\int_{R^3} |\nabla u|^2 dx\biggr)\Delta u + V(x)u=f(x,u),&x\in \mathbb {R}^3,\\[9pt]u\in H^1 (\mathbb {R}^3),\end{array}\right.$$ where a,b>0 are constants, V:?3→? is continuous and has a positive infimum. f is a subcritical nonlinearity which needs not to satisfy the usual Ambrosetti-Rabinowitz-type growth conditions.  相似文献   

9.
Let N ≥ 5 and \({{\mathcal{D}}^{2,2} (\mathbb{R}^N)}\) denote the closure of \({C_0^\infty (\mathbb{R}^N)}\) in the norm \({\|u\|_{{\mathcal{D}}^{2,2} (\mathbb{R}^N)}^2 := \int\nolimits_{\mathbb{R}^N} |\Delta u|^2.}\) Let \({K \in C^2 (\mathbb{R}^N).}\) We consider the following problem for ? ≥ 0: $$(P_\varepsilon) \left\{\begin{array}{llll}{\rm Find} \, u \in {\mathcal{D}}^{2, 2} (\mathbb{R}^N) \, \, {\rm solving} :\\ \left.\begin{array}{lll}\Delta^2 u = (1+ \varepsilon K (x)) u^{\frac{N+4}{N-4}}\\ u > 0 \end{array}\right\}{\rm in} \, \mathbb{R}^N.\end{array}\right.$$ We show an exact multiplicity result for (P ? ) for all small ? > 0.  相似文献   

10.
In this paper we consider a p-Laplacian equation with strong Allee effect growth rate and Dirichlet boundary condition $$\left\{\begin{array}{ll} {\rm div} (|\nabla u|^{p-2} \nabla u) + \lambda f(x,u)=0, &\quad x \in \Omega, \\ u=0, &\quad x \in \partial \Omega, \qquad \qquad ^ {(P_\lambda)} \end{array}\right.$$ where Ω is a bounded smooth domain in ${\mathbb{R}^N}$ for ${N \ge 1, p > 1}$ , and λ is a positive parameter. By using variational methods and a suitable truncation technique, we prove that problem (P λ) has at least two positive solutions for large parameter and it has no positive solutions for small parameter. In addition, a nonexistence result is investigated.  相似文献   

11.
In this paper we deal with local estimates for parabolic problems in ${\mathbb{R}^N}$ with absorbing first order terms, whose model is $$\left\{\begin{array}{l@{\quad}l}u_t- \Delta u +u |\nabla u|^q = f(t,x) \quad &{\rm in}\, (0,T) \times \mathbb{R}^N\,,\\u(0,x)= u_0 (x) &{\rm in}\, \mathbb{R}^N \,,\quad\end{array}\right.$$ where ${T >0 , \, N\geq 2,\, 1 < q \leq 2,\, f(t,x)\in L^1\left( 0,T; L^1_{\rm loc} \left(\mathbb{R}^N\right)\right)}$ and ${u_0\in L^1_{\rm loc}\left(\mathbb{R}^{N}\right)}$ .  相似文献   

12.
We investigate the asymptotic behaviour as p of sequences of positive weak solutions of the equation $$\left\{\begin{array}{l}-\Delta_p u = \lambda\,u^{p-1}+ u^{q(p)-1}\quad {\rm in}\quad \Omega,\\ u = 0 \quad {\rm on}\quad \partial\Omega,\end{array} \right.$$ where λ > 0 and either 1 < q(p) < p or pq(p), with ${{\lim_{p\to\infty}{q(p)}/{p}=Q\neq1}}$ . Uniform limits are characterized as positive viscosity solutions of the problem $$\left\{\begin{array}{l}\min\left\{|\nabla u (x)| - \max\{\Lambda\,u (x),u ^Q(x)\}, -\Delta_{\infty}u (x)\right\} = 0 \quad {\rm in} \quad \Omega,\\ u = 0\quad {\rm on}\quad \partial\Omega.\end{array}\right.$$ for appropriate values of Λ > 0. Due to the decoupling of the nonlinearity under the limit process, the limit problem exhibits an intermediate behavior between an eigenvalue problem and a problem with a power-like right-hand side. Existence and non-existence results for both the original and the limit problems are obtained.  相似文献   

13.
We discuss existence and non-existence of positive solutions for the following system of Hardy and Hénon type: $$\left\{\begin{array}{ll} {-\Delta v=|x|^{\alpha}u^{p},\,-\Delta u=|x|^{\beta}v^{q} \,\,{\rm in}\, \Omega,}\\ {u=v=0 \quad\quad\quad\quad\quad\quad\quad\quad\quad{\rm on}\, \partial \Omega}, \end{array}\right.$$ where ${\Omega\ni 0}$ is a bounded domain in ${\mathbb{R}^{N}}$ , N ≥ 3, p, q > 1, and α, β > ?N. We also study symmetry breaking for ground states when Ω is the unit ball in ${\mathbb{R}^{N}}$ .  相似文献   

14.
We consider the following problem $$\left\{ \begin{array}{ll}-\Delta u = \mu |u|^\frac{4}{N-2}u + \frac{|u|^\frac{4-2s}{N-2}u}{|x|^{s}} + a(x)u, & x \in \Omega,\\ u=0, & {\rm on}\; \partial \Omega \end{array}\right.$$ where ${ \mu \ge 0, 0 < s < 2, 0 \in \partial \Omega}$ and Ω is a bounded domain in R N . We prove that if ${N \ge 7, a(0) > 0}$ and all the principle curvatures of at 0 are negative, then the above problem has infinitely many solutions.  相似文献   

15.
We study the problem $$ \left\{\begin{array}{ll} {-\varepsilon^{2}\mathcal{M}^+_{\lambda,\Lambda}(D^{2}u) = f (x, u)} \quad\; {\rm in} \; \Omega,\\ {u = 0} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad {\rm on} \; \partial{\Omega}, \end{array} \right.$$ where Ω is a smooth bounded domain in ${\mathbb{R}^{N},N > 2,}$ and show it possesses nontrivial solutions for small values of ε provided f is a nonnegative continuous function which has a positive zero. The multiplicity result is based on degree theory together with a new Liouville type theorem for ${-{M}^+_{\lambda,\Lambda}(D^{2}u) = f(u)}$ in ${\mathbb{R}^{N}}$ for nonnegative nonlinearities with zeros.  相似文献   

16.
In this paper, we consider the initial-boundary value problem of the two-species chemotaxis Keller-Segel model
$$\begin{aligned} \textstyle\begin{cases} u_{t}=\Delta u-\chi_{1}\nabla \cdot (u\nabla w), &x\in \varOmega , \ t>0, \\ v_{t}=\Delta v-\chi_{2}\nabla \cdot (v\nabla w), &x\in \varOmega , \ t>0, \\ 0=\Delta w-\gamma w+\alpha_{1}u+\alpha_{2}v, &x\in \varOmega , \ t>0, \end{cases}\displaystyle \end{aligned}$$
where the parameters \(\chi_{1}\), \(\chi_{2}\), \(\alpha_{1}\), \(\alpha_{2}\), \(\gamma \) are positive constants, \(\varOmega \subset \mathbb{R}^{2}\) is a bounded domain with smooth boundary. We obtain the results for finite time blow-up and global bounded as follows: (1) For any fixed \(x_{0}\in \varOmega \), if \(\chi_{1}\alpha_{2}= \chi_{2}\alpha_{1}\), \(\int_{\varOmega }(u_{0}+v_{0})|x-x_{0}|^{2}dx\) is sufficiently small, and \(\int_{\varOmega }(u_{0}+v_{0})dx>\frac{8\pi ( \chi_{1}\alpha_{1}+\chi_{2}\alpha_{2})}{\chi_{1}\alpha_{1}\chi_{2} \alpha_{2}}\), then the nonradial solution of the two-species Keller-Segel model blows up in finite time. Moreover, if \(\varOmega \) is a convex domain, we find a lower bound for the blow-up time; (2) If \(\|u_{0}\|_{L^{1}(\varOmega )}\) and \(\|v_{0}\|_{L^{1}( \varOmega )}\) lie below some thresholds, respectively, then the solution exists globally and remains bounded.
  相似文献   

17.
This paper deals with a two-competing-species chemotaxis system with two different chemicals
$$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad}l} \displaystyle u_{t}=\Delta u-\chi_{1}\nabla \cdot (u\nabla v)+\mu_{1} u(1-u-a _{1}w), & (x,t)\in \varOmega \times (0,\infty ), \\ \displaystyle \tau v_{t}=\Delta v-v+w, & (x,t)\in \varOmega \times (0,\infty ), \\ \displaystyle w_{t}=\Delta w-\chi_{2}\nabla \cdot (w\nabla z)+\mu_{2}w(1-a_{2}u-w), & (x,t)\in \varOmega \times (0,\infty ), \\ \displaystyle \tau z_{t}=\Delta z-z+u, & (x,t)\in \varOmega \times (0,\infty ), \end{array}\displaystyle \right . \end{aligned}$$
under homogeneous Neumann boundary conditions in a smooth bounded domain \(\varOmega \subset \mathbb{R}^{n}\) \((n\geq 1)\) with the nonnegative initial data \((u_{0},\tau v_{0},w_{0},\tau z_{0})\in C^{0}(\overline{\varOmega }) \times W^{1,\infty }(\varOmega )\times C^{0}(\overline{\varOmega })\times W ^{1,\infty }(\varOmega )\), where \(\tau \in \{0,1\}\) and the parameters \(\chi_{i},\mu_{i},a_{i}\) (\(i=1,2\)) are positive. When \(\tau =0\), based on some a priori estimates and Moser-Alikakos iteration, it is shown that regardless of the size of initial data, the system possesses a unique globally bounded classical solution for any positive parameters if \(n=2\). On the other hand, when \(\tau =1\), relying on the maximal Sobolev regularity and semigroup technique, it is proved that the system admits a unique globally bounded classical solution provided that \(n\geq 1\) and there exists \(\theta_{0}>0\) such that \(\frac{\chi_{2}}{ \mu_{1}}<\theta_{0}\) and \(\frac{\chi_{1}}{\mu_{2}}<\theta_{0}\).
  相似文献   

18.
Let Ω be a bounded domain in ${\mathbb{R}^2}$ with smooth boundary. We consider the following singular and critical elliptic problem with discontinuous nonlinearity: $$(P_\lambda)\left \{\begin{array}{ll} - \Delta u = \lambda \left(\frac{m(x, u) e^{\alpha{u}^2}}{|x|^{\beta}} + u^{q}g(u - a)\right),\quad{u} > 0 \quad {\rm in} \quad \Omega\\u \quad \quad = 0\quad {\rm on} \quad \partial \Omega \end{array}\right.$$ where ${0\leq q < 1 ,0< \alpha\leq4\pi}$ and ${\beta \in [0, 2)}$ such that ${\frac{\beta}{2} + \frac{\alpha}{4\pi} \leq 1}$ and ${{g(t - a) = \left\{\begin{array}{ll}1, t \leq a\\ 0, t > a.\end{array}\right.}}$ Under the suitable assumptions on m(x, t) we show the existence and multiplicity of solutions for maximal interval for λ.  相似文献   

19.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

20.
We consider an eigenvalue problem of the form $$\left.\begin{array}{cl}-\Delta_{p} u = \lambda\, K(x)|u|^{p-2}u \quad \mbox{in}\quad \Omega^e\\ u(x) =0 \quad \mbox{for}\quad \partial \Omega\\ u(x) \to 0 \quad \mbox{as}\quad |x| \to \infty,\end{array} \right \}$$ where \({\Omega \subset \mathrm{I\!R\!}^N}\) is a simply connected bounded domain, containing the origin, with C 2 boundary \({\partial \Omega}\) and \({\Omega^e:=\mathrm{I\!R\!^N} \setminus \overline{\Omega}}\) is the exterior domain, \({1 < p < N, \Delta_{p}u:={\rm div}(|\nabla u|^{p-2} \nabla u)}\) is the p-Laplacian operator and \({K \in L^{\infty}(\Omega^e) \cap L^{N/p}(\Omega^e)}\) is a positive function. Existence and properties of principal eigenvalue λ 1 and its corresponding eigenfunction are established which are generally known in bounded domain or in \({\mathrm{I\!R\!}^N}\) . We also establish the decay rate of positive eigenfunction as \({|x| \to \infty}\) as well as near .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号