首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The sol–gel process is widely used for the production of powders, coatings and bulk materials. However, being a wet-chemical technique, it has certain limitations related to properties of aqueous colloidal solution, especially when applied as a coating. The most frequently used methods, such as dip- and spin-coating, are difficult to apply onto more complex substrates. In these cases, the aerosol–gel deposition method can be regarded as the solution of this problem. In the present article, a novel plasma enhanced aerosol–gel method of coatings production is presented. A novelty of this method is based on an integration of the aerosol–gel deposition of thin films and their low temperature plasma treatment. Owing to the above, all stages of the coatings production process—substrate preparation, film deposition, and its plasma treatment, can be carried out in a single reactor. The design and operational scheme of such device is presented in this work. Using this device, thin coatings were first deposited on substrates and then plasma treated. The effect of deposition and plasma discharge conditions on morphology and chemical structure of the films has been studied. It was found that plasma treatment had a substantial influence on all the examined properties of the aerosol–gel deposited coatings.  相似文献   

2.
Plasma polymerisation of N ‐isopropyl acrylamide (NIPAAm) presents an exciting route for the production of thermally responsive coatings on a wide variety of substrates for applications in tissue culture and microfluidics. One issue associated with the polymerisation of NIPAAm via plasma polymerisation is the limited volatility of the monomer and the subsequent requirement for monomer and reactor heating to create and maintain the vapour. It is already well established that power is critical in the balance between polymer functionality and coating stability in plasma polymers. However, little is known of how reactor and substrate temperatures may be used to influence the physico‐chemical characteristics of polymers produced from such low‐volatility monomers. In this paper, we examine the effects of a range of plasma deposition parameters on the functionality and stability of plasma‐polymerised NIPAAm surfaces. X‐ray photoelectron spectroscopy (XPS), near‐edge X‐ray absorption fine structure spectroscopy (NEXAFS), ellipsometry and contact angle goniometry have been used to examine coating chemistry, stability in aqueous environments, deposition rates and thermo‐responsive behaviour. Our results indicate that plasma polymerisation at low powers and low temperatures enhances the ability of plasma‐polymerised NIPAAm to display a wettability phase transition, but also contributes to instability of the coating to dissolution or delamination in water. Our spectroscopic measurements confirm that retention of the monomer structure is facilitated by low power and temperature deposition and reveal that conversion of the amide groups to amine and nitrile groups occurs during the polymerisation process, particularly at high discharge powers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Hydroxyapatite (HA) formulated as Ca10(PO4)6(OH)2 becomes a favorable material for implants because of its chemical similarity to the calcium phosphate minerals present in biological hard tissue. Many efforts have been made in recent years in the development of processing methods for depositing hydroxyapatite on implant alloy substrate in order to have high strength, good processability, suitable specific density, excellent corrosion resistance in the physiological environment and good affinity to the living body. The plasma spray technique is commonly used in the HA coating on implants. The major problem for the plasma spray, however, is the decomposition and phase transformation of hydroxyapatite during the spray coating process. Electrochemical techniques including electrophretic deposition and electro-deposition are being developed as an alternative method for producing hydroyapatite coated composite material. It is very desirable at present to further strengthen the coating and bond it to the metal substrate, and to increase the bioactivity of hydroxyapatite coatings as well, which is very important for forming a strong chemical bond with natural bone as an implant material.  相似文献   

4.
Thin coatings in the Si-C system were obtained in a plasma device actived by microwave. Their chemical composition and mechanical properties are dependent on the deposition parameters like temperature and gas flow rate in the reactor. When the substrate temperature increases the stationnary dry friction coefficient is lower than 0.1 and the wear scar is smooth. In this case surface analyses reveal an interfacial layer on the antagonist which participates to the good tribological behaviour. With a hydrogen flow in the reactor, the coating flaked. The microstructure, the mechanical properties and the tribological behaviour are closely interdependent  相似文献   

5.
A method for the determination of coating film thicknesses at nanometer resolution based on surface masking and atomic force microscopy (AFM) is described. A polymeric mask is used to cover part of a substrate during the deposition of thin polymeric coatings by plasma polymerization, allowing the production of well defined polymer steps of heights of a few tens of nanometers. Tapping mode AFM has been employed to analyze the topography of these steps at high resolution. This method has also allowed accurate measurement of the kinetics of the deposition of plasma polymer films over a range of exposure times. XPS analysis of different substrate surfaces following mask removal found barely detectable residues, suggesting that the underlying surface chemistry remains unchanged, and accessible for further modification. In combination with quartz crystal microgravimetry, the method has been applied to the measurement of the density of plasma polymer coatings in the thickness range 4–50 nm.  相似文献   

6.
As one of the candidate coating materials for a melting crucible, yttrium oxides were deposited on graphite and niobium substrates using slurry and plasma spraying methods. Thermal cycling tests and interaction studies between U–Zr/U–Zr–RE fuel melt and the Y2O3 coatings were carried out to evaluate the performance as reusable coatings for a melting crucible. A multi‐layer coating method was also applied to overcome the issue of a thermal expansion mismatch between the coating and substrate. The results showed that the plasma‐sprayed coatings showed a good consolidation after deposition compared to slurry coating. The plasma‐sprayed Y2O3 coating on the niobium substrate showed better thermal cycling resistance than those coated on a graphite substrate. The proposed TaC/Y2O3 double‐layer coating which was plasma‐sprayed on the niobium substrate showed improved characteristics with no reaction layer formation and no separation from the substrate after the interaction with the U–Zr–RE melt. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Polyoxymethylene (POM, polyacetal) is one of the most popular plastics for machine elements, especially in Japan. However, it is difficult to use it under severe operating conditions such as high speed and high contact pressure. Diamond-like carbon (DLC) coatings were well known to be tribological and functional coatings. However, both POM and DLC coatings are difficult to adhere them each other. In the present paper, DLC coatings are deposited by plasma-based ion implantation and deposition (PBIID) method on POM substrate, and validity of DLC coatings on POM was investigated through friction and mechanical tests. When gas pressure was 0.2 and 0.8 Pa, hardness and adhesion properties of DLC coating deposited under gas pressure of 0.5 Pa were lower compared with under 0.2 and 0.8 Pa. For preparing DLC coatings having hard and good adhesion properties, relatively thin substrate was suitable. A correlation between relative humidity in the laboratory and friction coefficient was confirmed while DLC coatings remain on the substrate.  相似文献   

8.
The effect of varying process parameters on atmospheric plasma characteristics and properties of nanometre thick siloxane coatings is investigated in a reel-to-reel deposition process. Varying plasma operation modes were observed with increasing applied power for helium and helium/oxygen plasmas. The electrical and optical behaviour of the dielectric barrier discharge were determined from current/voltage, emission spectroscopy and time resolved light emission measurements. As applied power increased, multiple discharge events occurred, producing a uniform multi-peak pseudoglow discharge, resulting in an increase in the discharge gas temperature. The effects of different operating modes on coating oxidation and growth rates were examined by injecting hexamethyldisiloxane liquid precursor into the chamber under varying operating conditions. A quenching effect on the plasma was observed, causing a decrease in plasma input power and emission intensity. Siloxane coatings deposited in helium plasmas had a higher organic component and higher growth rates than those deposited in helium/oxygen plasmas.  相似文献   

9.
We describe a new coating method Laminar Flow Coating (LFC) technique developed to obtain highly reflective (HR) laser damage resistant sol-gel multidielectric coatings. Such coatings are used in high-power lasers for inertial confinement fusion experiments (ICF). This technique uses substrates in an upside-down position and a travelling wave of coating solution is transported with a laminar motion under the substrate surface with a tubular dispense unit. This creates a thin-film coating by solvent evaporation. Satisfactory results have been obtained on 20-cm square glass substrates regarding the optical performances, the thickness uniformity, the edge-effects and the laser damage resistance. This deposition technique combines the advantages of both classical techniques: the non-exclusive substrate geometry such as in dip-coating and the small solution consumption such as in spin-coating.The association of sol-gel colloidal suspensions and LFC coating process has been demonstrated as a promising way to produce inexpensive specific optical coatings [1].  相似文献   

10.
The aim of the first part of the paper is to give some advice for the faultless metallographic preparation of vacuum plasma sprayed coatings. Several coating/substrate combinations using metals, alloys and ceramics were investigated to derive some general rules. The second part deals with a preparation technique for cross-sections- of physical vapour deposition coatings. This technique was optimized for TiN and Ti(C, N) coatings on hardmetals which were examined in an analytical transmission electron microscope.  相似文献   

11.
A strontium-doped hardystonite (Sr-HT) bioceramic, in bulk form, demonstrates excellent bioactivity for bone regeneration with high fracture toughness and compressive strength. This work examines the antibacterial and mechanical properties of Sr-HT coatings on an alpha-beta titanium alloy with a high specific strength and excellent corrosion resistance (Ti-6Al-4V) produced by atmospheric plasma spray (APS) as the deposition coating technique. A hydroxyapatite (HAp) APS coating, a commercial bioceramic coating, is chosen as the control. The in-situ observation showed that Sr-HT powders experience temperatures during plasma processing that exceeded their melting point to form a coating well adhered to the substrate. It was demonstrated that the Sr-HT coating possessed superior antibacterial properties against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Pseudomonas aeruginosa. In addition, the Sr-HT coating exhibits a uniform distribution of hardness and elastic moduli, higher nanohardness and elastic moduli compared to the equivalent properties of the HAp coating. Moreover, the Sr-HT coating outperforms the HAp coating regarding scratch and wear resistance. The bonding and shear strength of the Sr-HT coating are higher than the values required for orthopedic implant coatings. The Sr-HT coating also allows efficient zinc, silicon and strontium ions release when immersed in cell culture media. In summary, the antibacterial capabilities and the mechanical properties of the Sr-HT APS coating exceed those of the commercial HAp APS coating. Therefore, Sr-HT APS coatings are candidates for bioceramic coating applications in orthopedic implants.  相似文献   

12.
The work demonstrates a proof of application of the modulated-temperature dilatometry (MTDIL) to the stresses investigations of the well known and commonly used hard coatings e.g. TiN, TiCN, TiAlN thin films deposited mainly on different type of tools for its higher performances. In the PVD (physical vapour deposition) processes such kind of coatings are formed in meta stable state caused, between other, by strong stresses between coating and substrate. These stresses have an important influence on the fundamental properties of the coatings, for example, adherence to the substrate, so they are the subject of many investigations by use of different methods, mainly XRD (X-ray diffraction). For the purpose of presentation of application of MTDIL for such kind of investigation two reference substrate materials were chosen: ARMCO steel and cemented carbide in the form suitable for dilatometric analysis covered, by actually the most conventional, TiN hard coating. In the article the experimental results are presented, discussed and compared with simple model formed by means of finite elements method (FEM). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
In the first part of the present study, an appropriate inflow turbulent boundary condition is chosen. Then, a comparison is made between two turbulence models for a plasma jet discharged into air atmosphere. The plasma jet gas phase flow is predicted with the standard k–ɛ model and the RNG model of turbulence. Particles behavior is modeled using stochastic particles trajectories. A validation of the plasma jet model is made by comparison with experimental data. This part of the study shows that the flow features are better predicted with the RNG model. The choice of appropriate boundary conditions seems to be crucial for a better simulation of plasma thermal spraying. Afterwards, computations are performed for projection of Ni particles. It is found that the computed particles velocities and temperatures are also better predicted with the RNG model compared with the k–ɛ model. The second part of this study is concerned with the effect of the substrate movement on the gas flow field. This is performed in order to simulate a realistic coatings process where a relative movement between the torch and the substrate always exists. Three substrate velocities have been used and it is found that the flow fields are affected only very near the substrate wall.  相似文献   

14.
采用微弧氧化和热处理复合技术,在钛表面制备了具有双层结构的榍石/氧化钛复合涂层。榍石/氧化钛复合涂层的外层是由微弧氧化涂层经热处理后晶化生成;而内层是由钛基底的氧化生成,并且氧化钛表现出不同的Ti,O原子比。由于钛基底的氧化,孔径在50~500nm的微孔呈层状结构分布在涂层内层。与微弧氧化涂层相比,该复合涂层具有很好的磷灰石诱导能力,这是由于榍石沿着特定晶面和晶向与羟基磷灰石表现出良好的晶体学匹配关系,从而为磷灰石的成核和取向沉积过程提供良好的位点。  相似文献   

15.
采用微弧氧化和热处理复合技术,在钛表面制备了具有双层结构的榍石/氧化钛复合涂层。榍石/氧化钛复合涂层的外层是由微弧氧化涂层经热处理后晶化生成;而内层是由钛基底的氧化生成,并且氧化钛表现出不同的Ti,O原子比。由于钛基底的氧化,孔径在50~500 nm的微孔呈层状结构分布在涂层内层。与微弧氧化涂层相比,该复合涂层具有很好的磷灰石诱导能力,这是由于榍石沿着特定晶面和晶向与羟基磷灰石表现出良好的晶体学匹配关系,从而为磷灰石的成核和取向沉积过程提供良好的位点。  相似文献   

16.
The competitive ablation and polymerization (CAP) principle relates the ablation of materials in plasma to the deposition of materials in plasma. Plasma polymerization and plasma treatment cannot be elucidated without consideration of the fragmentation of molecules in both the gas and solid phases. The general fragmentation tendency follows a plasma sensitivity series of the elements involved that is based on element electronegativity. When consecutive plasma treatments, sequential plasma polymerization, or a combination of plasma treatment and plasma polymerization are carried out in the same reactor, factors that are often not considered in an ordinary individual process become crucial. The CAP principle and the concept of a plasma sensitivity series of the elements explain the rather complicated and interrelated influences of fragmented elements in the plasma deposition of materials. Plasma polymers should be considered a mixture of oligomers and polymeric networks. The oligomer content in a plasma‐polymerized layer is vitally important to the adhesion of the plasma polymer to the substrate as well as to any subsequent coating applied to the layer of the plasma polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 943–953, 2000  相似文献   

17.
In this paper a process based on the use of rf inductively coupled plasma is applied for the synthesis and deposition of Si-base ceramic materials (i.e., SiC, Si3N4, SiO2). The starting materials are low-cost liquid disilanes. The atomization process is first investigated and the structure of the resulting coatings is characterized by means of X-ray diffraction, scanning electron microscopy as well as with transmission electron microscopy. Results of the influence of some processing parameters (i.e., chamber pressure, spray distance, substrate cooling, plasma gas nature and composition, precursor composition and atomization parameters) on the phase and microstructure of the coating is reported. Control of the microstructure (or nanostructure) as well as the phase content, namely the / ratio of the phases for SiC and Si3N4, can be achieved with such a synthesis and deposition technique.  相似文献   

18.
Extensive studies on the discharge current of a 50-kHz argon glow discharge in a parallel-plate reactor has led to a model that is able to describe the discharge in a wide range of pressures and powers for the evaluation of plasma parameters. The network simulation program PSPICE can be used to simulate the model in a way easily adopted to other plusma reactors as well. This may lead to a new plasma diagnostic method that does not require a complicated setup. The behavior of the discharge current can also he used for numerical simulations of the sell bias voltage in capacitively coupled plasma reactors. The influence of power and pressure can be integrated and allows an estimation of the self-bias for given reactor geometries and process parameters.  相似文献   

19.
This article examines the substrate/coating interface of a coating deposited onto mild steel and stainless steel substrates using an ambient temperature blast coating technique known as CoBlast. The process uses a coincident stream of an abrasive blast medium and coating medium particles to modify the substrate surface. The hypothesis for the high bond strength is that the abrasive medium roughens the surface while simultaneously disrupting the passivating oxide layer of the substrate, thereby exposing the reactive metal that then reacts with the coating medium. The aim of this study is to provide greater insight into the coating/substrate bonding mechanism by analysing the interface between a hydroxyapatite coating on both mild and stainless steel substrates. The coating adhesion was measured via a tensile test, and bond strengths of approximately 45 MPa were measured. The substrate/coating interface was examined using transmission electron microscopy and selected area diffraction. The analysis of the substrate/coating interface revealed the presence of ultrafine grains in both the coating and substrate at interface associated with deformation at the interface caused by particle impaction during deposition. The chemical reactivity resulting from the creation of these ultrafine grains is proposed to explain the high adhesive strength of CoBlast coatings.  相似文献   

20.
Using low pressure plasma polymerization, nano-scaled oxygen-rich plasma polymer films (CO) were deposited onto pristine silicon wafers as well as on nitrogen-containing plasma polymer (CN) model surfaces. We investigate the influence of the nature of the substrate as well as a potential sub-surface effect emerging from the buried CO/CN interface, just nanometers below the surface. X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry revealed two important phenomena that occurred during the deposition of the terminal CO layer: (1) a strong degree of oxidation, already for 1 nm nominal thickness, and (2) a gradual transition in chemical composition between the two layers, clearly indicating that effectively a vertical chemical gradient results, even when a two-step coating process was applied. Such terminal gradient film structures were used to study film stability in aqueous environments. Molecular rearrangements were scrutinized in the top-surface in contact with water and we found that the top-surface chemistry and wetting properties of the oxygen-rich termination layer matched those of thick CO reference coatings. Nevertheless, the adsorption of green fluorescent protein (GFP) was observed to be sensitive to the CO terminal layer thickness. Namely, an enhanced protein adsorption was observed for 1–2 nm thick CO layers on CN, whereas a significantly reduced protein adsorption was seen on ≥?3 nm thick CO terminal layers. We conclude that both, surface and sub-surface conditions significantly affect protein adsorption as opposed to the traditional consideration of surface properties alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号