首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Chemically activated CF3SH, CFCl2SH, and CF2ClSH were formed through combination of SH and CF3, CFCl2, and CF2Cl radicals, respectively. The SH radical was prepared by abstraction of an H‐atom from H2S by the halocarbon radical produced during photolysis of (CF3)2C=O, (CFCl2)2C=O, or (CF2Cl)2C=O. 1,2‐HX (X = F, Cl) elimination reactions were observed from CF3SH, CFCl2SH, and CF2ClSH with products detected by GC‐MS. The combination reaction of CF2Cl radicals with SH radicals prepared CF2ClSH molecules with approximately 318 kJ/mol of internal energy. The experimental rate constants for elimination of HCl and HF from CF2ClSH were 3 ± 3 × 1010 and 2 ± 1 × 109 s?1, respectively. Comparison to Rice–Ramsperger–Kassel–Marcus (RRKM) calculated rate constants assigned the threshold energies as 171 ± 12 and 205 ± 12 kJ/mol for the unimolecular elimination of HCl and HF, respectively. Theoretical calculations using the B3PW91, MP2, and M062X methods with the 6311+G(2d,p) and 6‐31G(d',p') basis sets established that for a specific method the threshold energies differ by only 4 kJ/mol between the two different basis sets. There was wide variation among the three methods, but the M062X approach appeared to give threshold energies closest to the experimental values. Chemically activated CF3SH and CFCl2SH were also prepared with about 318 kcal mol?1 of internal energy, and the HX (X = F, Cl) elimination reactions were observed. Only HCl loss was detected from CFCl2SH, but the rate was too fast to measure with our kinetic method; however, based on our detection limit the HF elimination channel is at least 50 times slower.  相似文献   

2.
Ab initio molecular orbital calculations with split-valence plus polarization basis sets and incorporating valence-electron correlation have been performed to determine the equilibrium structure of ethyloxonium ([CH3CH2OH2]+) and examine its modes of unimolecular dissociation. An asymmetric structure (1) is predicted to be the most stable form of ethyloxonium, but a second conformational isomer of Cs symmetry lies only 1.4 kJ mol?1 higher in energy than 1. Four unimolecular decomposition pathways for 1 have been examined involving loss of H2, CH4, H2O or C2H4. The most stable fragmentation products, lying 65 kJ mol?1 above 1, are associated with the H2 elimination reaction. However, large barriers of 257 and 223 kJ mol?1 have to be surmounted for H2 and CH4 loss, respectively. On the other hand, elimination of either C2H4 or H2O from ethyloxonium can proceed without a barrier to the reverse associations and, with total endothermicities of 130 and 160 kJ mol?1, respectively, these reactions are expected to dominate at lower energies. A second important equilibrium structure on the surface is a hydrogen-bridged complex, lying 53 kJ mol?1 above 1. This complex is involved in the C2H4 elimination reaction, acts as an intermediate in the proton-transfer reaction connecting [C2H5]+ +H2O and C2H4 + [H3O]+ and plays an important role in the isotopic scrambling that has been observed experimentally in the elimination of either H2O or C2H4 from ethyloxonium. The proton affinity of ethanol was calculated as 799 kJ mol?1, in close agreement with the experimental value of 794 kJ mol?1.  相似文献   

3.
The gas‐phase reactions of XH? (X=O, S) + CH3Y (Y=F, Cl, Br) span nearly the whole range of SN2 pathways, and show an intrinsic reaction coordinate (IRC) (minimum energy path) with a deep well owing to the CH3XH???Y? (or CH3S????HF) hydrogen‐bonded postreaction complex. MP2 quasiclassical‐type direct dynamics starting at the [HX???CH3???Y]? transition‐state (TS) structure reveal distinct mechanistic behaviors. Trajectories that yield the separated CH3XH+Y? (or CH3S?+HF) products directly are non‐IRC, whereas those that sample the CH3XH???Y? (or CH3S????HF) complex are IRC. The IRCIRC/non‐IRC ratios of 90:10, 40:60, 25:75, 2:98, 0:100, and 0:100 are obtained for (X, Y)=(S, F), (O, F), (S, Cl), (S, Br), (O, Cl), and (O, Br), respectively. The properties of the energy profiles after the TS cannot provide a rationalization of these results. Analysis of the energy flow in dynamics shows that the trajectories cross a dynamical bifurcation, and that the inability to follow the minimum energy path arises from long vibration periods of the X?C???Y bending mode. The partition of the available energy to the products into vibrational, rotational, and translational energies reveals that if the vibrational contribution is more than 80 %, non‐IRC behavior dominates, unless the relative fraction of the rotational and translational components is similar, in which case a richer dynamical mechanism is shown, with an IRC/non‐IRC ratio that correlates to this relative fraction.  相似文献   

4.
5.
The geometries of the amines NH2X and amido anions NHX?, where X = H, CH3, NH2, OH, F, C2H, CHO, and CN have been optimized using ab initio molecular orbital calculations with a 4-31G basis set. The profiles to rotation about the N? X bonds in CH3NH?, NH2NH?, and HONH? are very similar to those for the isoprotic and isoelectronic neutral compounds CH3OH, NH2OH, and HOOH. The amines with unsaturated bonds adjacent to the nitrogen atoms undergo considerable skeletal rearrangement on deprotonation such that most of the negative charge of the anion is on the substituent. The computed order of acidity for the amines NH2X is X = CN > HCO > F ≈ C2H > OH > NH2 > CH3 > H and for the reaction NHX? + H+ → NH2X the computed energies vary over the range 373–438 kcal/mol.  相似文献   

6.
The reactions of hydrogen atoms produced by the mercury-photosensitized decomposition of H2 with bis(trifluoromethyl)disulfide has been studied. The rate coefficient for the primary reaction, H + CF3SSCF3 → CF3SH + CF3S, was determined in competition with the reaction H + C2H4S → SH + C2H4 to have the value k = (3.0 ± 0.18) × 1014 exp[-(4560 ± 140)/RT] cm3 mol?1 S?1. The high A factor can be partially accounted for by assuming free rotation for the two CF3 groups and the SCF3 groups about the S—S bond in the transition state. The relatively high activation energy is attributed to inductive and orbital overlap effects. CH3SH, H2S, and CF3SH all react with CF3SSCF3 to yield solid complexes which were not explored further.  相似文献   

7.
Enthalpy, activation energy, and rate constant of 9 alkyl, 3 acyl, 3 alkoxyl, and 9 peroxyl radicals with alkanethiols, benzenethiol, and L ‐cysteine are calculated. The intersection parabolas model is used for activation energy calculations. Depending on the structure of attacking radical, the activation energy of reactions with alkylthiols varies from 3 to 43 kJ mol?1 for alkyl radicals, from 7 to 9 kJ mol?1 for alkoxyl, and from 18 to 35 kJ mol?1 for peroxyl radicals. The influence of adjacent π‐bonds on activation energy is estimated. The polar effect is found in reactions of hydroxyalkyl and acyl radicals with alkylthiols. The steric effect is observed in reactions of alkyl radicals with tert‐alkylthiols. All these factors are characterized via increments of activation energy. Quantum chemical calculations of activation energy and geometry of transition state were performed for model reactions: C?H3 + CH3SH, CH3O? + CH3SH, and HO2? + CH3SH with using density functional theory and Gaussian‐98. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 284–293, 2009  相似文献   

8.
Several minimal (7, 3/3) Gaussian basis sets have been used to calculate the energies and some other properties of CH4 and H2O. Improved basis sets developed for these molecules have been extended to NH3 and HF and employed to H2CO and CH3OH. Interaction energies between XHn molecules have been calculated using the old and the new minimal basis sets. The results obtained with the new basis sets are comparable in accuracy to those calculated with significantly more extended basis sets involving polarization functions. Binding energies calculated using the counterpoise method are not much different for the new and the old minimal basis sets, and are likely to be more accurate than the results of much more extended calculations.  相似文献   

9.
Rate coefficients for proton transfer reactions of the type XH+ + H2O → H3O+ + X where X = H2, CH4, CO, N2, CO2 and N2O and the type H2O + X? → XH + OH? where X = H, NH2 and C2H5NH have been measured at 297 K using the flowing afterglow technique. The results compare favourably with the predictions of the average-dipole-orientation theory. A trend is observed with exothermicity on a plot of (kexp/kADO)298 K versus ?ΔH298 K0. The question is raised whether the relatively low probability observed for slightly exothermic proton transfer reactions is a consequence of reaction mechanism or results from the presence of a small activation energy barrier.  相似文献   

10.
Loss of H2S is the characteristic Cys side‐chain fragmentation of the [M? H]? anions of Cys‐containing peptides. A combination of experiment and theory suggests that this reaction is initiated from the Cys enolate anion as follows: RNH‐?C(CH2SH)CONHR′ Ø [RNHC(?CH2)CONHR′ (HS?)] Ø [RNHC(?CH2)CO‐HNR′‐H]?+H2S. This process is facile. Calculations at the HF/6‐31G(d)//AM1 level of theory indicate that the initial anion needs only ≥20.1 kcal mol?1 of excess energy to effect loss of H2S. Loss of CH2S is a minor process, RNHCH(CH2SH)CON?‐R′ Ø RNHCH(CH2S?)CONHR′ Ø RNH ?CHCONHR+CH2S, requiring an excess energy of ≥50.2 kcal mol?1. When Cys occupies the C‐terminal end of a peptide, the major fragmentation from the [M–H]? species involves loss of (H2S+CO2). A deuterium‐labelling study suggests that this could either be a charge‐remote reaction (a process which occurs remote from and uninfluenced by the charged centre in the molecule), or an anionic reaction initiated from the C‐terminal CO2? group. These processes have barriers requiring the starting material to have an excess energy of ≥79.6 (charge‐remote) or ≥67.1 (anion‐directed) kcal mol?1, respectively, at the HF/6‐31G(d)//AM1 level of theory. The corresponding losses of CH2O and H2O from the [M? H]? anions of Ser‐containing peptides require ≥35.6 and ≥44.4 kcal mol?1 of excess energy (calculated at the AM1 level of theory), explaining why loss of CH2O is the characteristic side‐chain loss of Ser in the negative ion mode. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
The mechanisms for the reaction of CH3SSCH3 with OH radical are investigated at the QCISD(T)/6‐311++G(d,p)//B3LYP/6‐311++G(d,p) level of theory. Five channels have been obtained and six transition state structures have been located for the title reaction. The initial association between CH3SSCH3 and OH, which forms two low‐energy adducts named as CH3S(OH)SCH3 (IM1 and IM2), is confirmed to be a barrierless process, The S? S bond rupture and H? S bond formation of IM1 lead to the products P1(CH3SH + CH3SO) with a barrier height of 40.00 kJ mol?1. The reaction energy of Path 1 is ?74.04 kJ mol?1. P1 is the most abundant in view of both thermodynamics and dynamics. In addition, IMs can lead to the products P2 (CH3S + CH3SOH), P3 (H2O + CH2S + CH3S), P4 (CH3 + CH3SSOH), and P5 (CH4 + CH3SSO) by addition‐elimination or hydrogen abstraction mechanism. All products are thermodynamically favorable except for P4 (CH3 + CH3SSOH). The reaction energies of Path 2, Path 3, Path 4, and Path 5 are ?28.42, ?46.90, 28.03, and ?89.47 kJ mol?1, respectively. Path 5 is the least favorable channel despite its largest exothermicity (?89.47 kJ mol?1) because this process must undergo two barriers of TS5 (109.0 kJ mol?1) and TS6 (25.49 kJ mol?1). Hopefully, the results presented in this study may provide helpful information on deep insight into the reaction mechanism. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
Using the HF, B3LYP, and MP2 methods in the 6−31+G(d) basis with zero-point energy corrections, quantum chemical calculations of energy characteristics were carried out for the model molecules CH2=XH+ (X = NH, O, S, Se) formed from the molecules YCH2XH (Y = NH2, OH, SH, SeH, Cl) either through the elimination of Y-anions or as a result of the abstraction of neutral species YH from these molecules upon their interaction with a proton. Stabilities of the onium states of nitrogen atom were shown to be considerably higher than those of the onium states of chalcogen derivatives, with the lowest stability shown by the models with the Cl atom being in the onium state. The results have been formulated in the form of stability series of the onium compounds and allowed one to interpret certain features of the aminomethylation reaction (the Mannich reaction), hydroxy- and alkoxymethylation, thio- and selenomethylation, and chloromethylation (the Blanc reaction).  相似文献   

13.
Reaction of N-Trimethylmetal(IVb) Trialkylphosphine Imines with Hydrogen Halides Investigations of the reaction of N-trimethylmetal(IVb)-substituted phosphine imines with hydrogen have been carried out. With one mole of HX phosphonium halides of the general formula [R3P? NH? MMe3]X? (R = CH3, C2H5; M = Si, Ge, Sn; X = Cl, Br, J) are obtained. A second mole of HX causes M? N bond cleavage, yielding aminophosphonium halides, [R3P? NH2]X?.  相似文献   

14.
Ab initio calculations are used to provide information on H3N???XY???HF triads (X, Y=F, Cl, Br) each having a halogen bond and a hydrogen bond. The investigated triads include H3N???Br2‐HF, H3N???Cl2???HF, H3N???BrCI???HF, H3N???BrF???HF, and H3N???ClF???HF. To understand the properties of the systems better, the corresponding dyads are also investigated. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads are studied at the MP2 level of theory with the 6‐311++G(d,p) basis set. Because the primary aim of this study is to examine cooperative effects, particular attention is given to parameters such as cooperative energies, many‐body interaction energies, and cooperativity factors. The cooperative energy ranges from ?1.45 to ?4.64 kcal mol?1, the three‐body interaction energy from ?2.17 to ?6.71 kcal mol?1, and the cooperativity factor from 1.27 to 4.35. These results indicate significant cooperativity between the halogen and hydrogen bonds in these complexes. This cooperativity is much greater than that between hydrogen bonds. The effect of a halogen bond on a hydrogen bond is more pronounced than that of a hydrogen bond on a halogen bond.  相似文献   

15.
A new type of hydrogen bond, called a dihydrogen bond, has recently been introduced. In this bond hydrogen is donated to (hydridic) hydrogen. In this paper, ab initio HF, MP2 and DFT(B3LYP) levels of theory with different basis sets in combination with counterpoise procedure for basis set superposition error correction have been applied to BH3NH3 dimer and BH3NH3 complexes of methane, hydrogen cyanide, ammonia, water, methanol and hydrogen fluoride to understand the features of dihydrogen bond. The optimized geometric parameters and interaction energies for various isomers at different levels are estimated. The structures obtained at different computational levels are in agreement with each other. Dihydrogen bond does not occur in both BH3NH3⋯CH4 and BH3NH3⋯NH3 complexes. Apart from the B–H⋯H–N dihydrogen bond found in the BH3NH3 crystal and dimmer, the B–H⋯H–X (XC, O, F) dihydrogen bonds have been observed in the BH3NH3⋯HCN, BH3NH3⋯H2O, BH3NH3⋯CH3OH and BH3NH3⋯HF complexes, while the classic H bonds also exist in the last three complexes. As for the complexes in which only dihydrogen bonds appear the strength of dihydrogen bonds ranges from 17.9 to 18.9 kJ mol−1 at B3LYP/6-311++g(d,p) level. Binding energies obtained from the MP2 and B3LYP optimized structures are more sensitive to basis sets than those from the HF method. Larger basis functions generally tend to produce slightly longer intermolecular distances, and the B3LYP and MP2 methods generate shorter intermolecular distances though they usually produce longer bond lengths compared with those at the HF level. The infrared spectrum frequencies, IR intensities and the vibrational frequency shifts are reported. Finally the solution phase studies on BH3NH3⋯HF complex are also carried out using the Onsager reaction field model with a range of dielectric constants from 2 to 80 at B3LYP/6-311++g(d,p) level.  相似文献   

16.
Ab initio molecular orbital calculations using a 3-21G basis set have been used to optimize geometries for pyrrole, CH3(X)CCH2, CH3(H)CCHX (both cis and trans), c-C3H5X, and CH2CHCH2X, where X is CN and NC. In all the alkenyl derivatives methyl groups are found to adopt the conformation in which the methyl hydrogen eclipses the double bond. 6-31G*∥3-21G level calculations show the alkenyl cyanides to be of similar energy to pyrrole, but the isocyanides are ~20 kcal mol?1 higher in energy. For both substituents the cyclopropyl derivatives are higher in energy by ~10 kcal mol?1. At the 6-31G* level ring strain is 27.7 kcal mol?1 for the cyanide and 30.6 kcal mol?1 for the isocyanide. Data on the relative energies of RCN and RNC are compared when R is (i) a saturated hydrocarbon, (ii) an unsaturated hydrocarbon, (iii) an α-carbenium ion, (iv) an allyl cation, and (v) an α-carbanion.  相似文献   

17.
Geometry optimizations at the HF/3-21G(*) and HF/6-31G* levels of ab initio theory have been carried out for various isomers of model disubstituted phosphoranes PH3XY(X, Y?OH, CH3, NH2, and SH). Reasonable agreement was obtained between the optimized geometries and available crystal structure data for analogous compounds. The isomers were further characterized by frequency calculations. The MP2/6-31G*//6-31G* + ZPE energy data reveal that the interactions between the ligands are relatively small (0–4 kcal mol?1) for the most stable conformations of the isomers. Hence, for these conformations the apicophilicities (based upon monosubstituted phosphoranes) are approximately additive. The less stable PH3XY conformations are in general transition states or higher-order saddle points, and their interligand interactions are larger in magnitude (up to 10 kcal mol?1); the results with these conformations suggest that apicophilicities may not be as additive for some highly substituted phosphoranes. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
A kinetic study of the reactions of H atoms with CH3SH and C2H5SH has been carried out at 298 K by the discharge flow technique with EPR and mass spectrometric analysis of the species. The pressure was 1 torr. It was found: k1 = (2.20 ± 0.20) × 10?12 for the reaction H + CH3SH (1) and k2 = (2.40 ± 0.16) × 10?12 for the reaction H + C2H5SH (2). Units are cm3 molecule?1 s?1. A mass spectrometric analysis of the reaction products and a computer simulation of the reacting systems have shown that reaction (1) proceeds through two mechanisms leading to the formation of CH3S + H2 (1a) and CH3 + H2S (1b).  相似文献   

19.
The melting diagram of the system (CH3)4NF? HF was studied between 50 and 100 mole-% HF and from ?185°C to the respective liquidus temperatures (at most 162°C) by difference thermal analysis aided by temperature-dependent X-ray powder diffraction. The system was found to be quasi-binary with the HF-rich intermediary stable compounds (CH3)4NF · 2 HF (melting point 110°C), (CH3)4NF · 3 HF (20°C, decomposition), (CH3)4NF · 5 HF (?76°C, decomposition), and (CH3)4NF · 7 HF (?110°C, decomposition), most of which undergo solid-solid phase transitions. Crystal structures were determined of the low-temperature form of (CH3)4NF · 2 HF (stable below 83°C, orthorhombic, space group Pbca, Z = 8 formula units per unit cell), the high-temperature form of (CH3)4NF · 3 HF (stable above ?87°C, monoclinic, P2/c, Z = 4), and of (CH3)4NF · 5 HF (tetragonal, I4 , Z = 2). The structures are those of poly(hydrogen fluorides) (CH3)4N[HnFn+1] with homologous anions [H2F3]?, [H3F4]?, and [H5F6]?, respectively, formed by strong hydrogen bonding F? H…?F. The anion [H5F6]? is the first one of this composition established by crystal structure analysis. Its structure can be written as [(FH)2FHF(HF)2]? with four equivalent terminal hydrogen bonds of 248.4 pm and a very short central one of 226.6 pm (F…?F distances) through a 4 point of the space group.  相似文献   

20.
The electronic structure and chemical bonding in donor–acceptor complexes formed by group 13 element adamantane and perfluorinated adamantane derivatives EC9R′15 (E = B, Al; R′ = H, F) with Lewis bases XR3 and XC9H15 (X = N, P; R= H, CH3) have been studied using energy decomposition analysis at the BP86/TZ2P level of theory. Larger stability of complexes with perfluorinated adamantane derivatives is mainly due to better electrostatic and orbital interactions. Deformation energies of the fragments and Pauli repulsion are of less importance, with exception for the boron‐phosphorus complexes. The MO analysis reveals that LUMO energies of EC9R′15 significantly decrease upon fluorination (by 4.7 and 3.6 eV for E = B and Al, respectively) which results in an increase of orbital interaction energies by 27–38 (B) and 15–26 (Al) kcal mol?1. HOMO energies of XR3 increase in order PH3 < NH3 < PMe3 < PC9H15 < NMe3 < NC9H15. For the studied complexes, there is a linear correlation between the dissociation energy of the complex and the energy difference between HOMO of the donor and LUMO of the acceptor. The fluorination of the Lewis acid significantly reduces standard enthalpies of the heterolytic hydrogen splitting H2 + D + A = [HD]+ + [HA]?. Analysis of several types of the [HD]+···[HA]? ion pair formation in the gas phase reveals that structures with additional H···F interactions are energetically favorable. Taking into account the ion pair formation, hydrogen splitting is predicted to be highly exothermic in case of the perfluorinated derivatives both in the gas phase and in solution. Thus, fluorinated adamantane‐based Lewis superacids are attractive synthetic targets for the construction of the donor–acceptor cryptands. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号