首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The holographic interferometry enables three-dimensional measurements of displacement fields. The evaluated deformations and displacements can be used for Finite Element Method calculations. The system is well-defined for sound structures. In the case of internal flaws, the Finite Element net has to be changed iteratively. The comparison of stress fields indicates the suited structure.  相似文献   

2.
In this contribution a modelling approach using numerical homogenisation techniques is applied to predict the effective nonlinear material behaviour of composites from simulations of a representative volume element (RVE). Numerical models of the heterogeneous material structure in the RVE are generated using the eXtended Finite Element Method (XFEM) which allows for a regular mesh. Suitable constitutive relations account for the material behaviour of the constituents. The influence of the nonlinear matrix material behaviour on the composite is studied in a physically nonlinear FE simulation of the local material behaviour in the RVE ­ effective stress-strain curves are computed and compared to experimental observations. The approach is currently augmented by a damage model for the fibre bundle. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
This paper presents experimental and numerical methods to perform simulations of the mechanical behavior of textile reinforced composites and structures. The first aspect considered refers to the meso-to-macro transition in the framework of the finite element (FE) method. Regarding an effective modelling strategy the Binary Model is used to represent the discretized complex architecture of the composite. To simulate the local response and to compute the macroscopic stress and stiffness undergoing small strain a user routine is developed. The results are transfered to the macroscopic model during the solution process. The second aspect concerns the configuration of the fiber orientation and textile shear deformation in complex structural components. To take these deformations which affect the macroscopic material properties into account they are regarded in a macroscopic FE model. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We present an alternative method for the numerical simulation of elasto-plastic material behaviour. For this extended Finite Element (FE) formulation the history variables, which provide the information of plastic deformations from the previous timesteps, are represented as FE functions. This results in additional degrees of freedom (DOF), and the radial return of the standard formulation is replaced by a fully coupled Newton method for the extended system. Numerical studies, using viscoplastic regularization within a geometrically linear approach prove comparative results and an advantage in calculation time for the extended FE formulation. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Recently, meshfree-based computational modelling approaches have become popular in modelling biological phenomena due to their superior ability to simulate large deformations, multiphase phenomena and complex physics compared to the conventional grid-based methods. In this article, small plant cell aggregates were simulated using a three dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) and Coarse-Grained (CG) coupled computational approach to predict the morphological behaviour during drying. The model predictions of these cell aggregate models have been compared qualitatively and quantitatively through comparisons with experimental findings. The results show that the shrinkage and wrinkling behaviour of cell cluster models are in fairly good agreement with real cellular structures. The agreement between the cell aggregate model predictions and the experimental findings are closer in the high and medium moisture content values (X/X0 ≥ 0.3), than highly dried stages (X/X0 < 0.3). Further, optimisation and sensitivity studies have been conducted on model parameters such as particle resolution, smoothing length, mass transfer characteristics and wall forces. Overall, the 3-D nature of this model allows it to predict real 3-D morphological changes more realistically compared to the previous meshfree based 2-D cellular drying models. The proposed 3-D modelling approach has a higher potential to be used to model larger plant tissues with complicated physical and mechanical interactions as well as their multiscale interactions.  相似文献   

6.
7.
A new finite element (FE) is formulated based on an extension of previous FE models for studying constrained layer damping (CLD) in beams. Most existing CLD FE models are based on the assumption that the shear deformation in the core layer is the only source of damping in the structure. However, previous research has shown that other types of deformation in the core layer, such as deformations from longitudinal extension, and transverse compression, can also be important. In the finite element formulated here, shear, extension, and compression deformations are all included. As presented, there are 14 degrees of freedom in this element. However, this new element can be extended to cases in which the CLD structure has more than three layers. The numerical study shows that this finite element can be used to predict the dynamic characteristics accurately. However, there is a limitation when the core layer has a high stiffness, as the new element tends to predict loss factors and natural frequencies that are too high. As a result, this element can be accepted as a general computation model to study the CLD mechanism when the core layer is soft. Because the element includes all three types of damping, the computational cost can be very high for large scale models. Based on this consideration, a simplified finite modeling approach is presented. This approach is based on an existing experimental approach for extracting equivalent properties for a CLD structure. Numerical examples show that the use of these extracted properties with commercially available FE models can lead to sufficiently accurate results with a lower computational expense.  相似文献   

8.
This contribution deals with the modelling and simulation of curing phenomena in adhesively bonded piezo metal composites which consists of a piezoelectric module enclosed by an adhesive layer which in turn is surrounded by two metal sheets. A short survey on the neccessary experimental investigations to characterise the adhesive's material behaviour is given and important aspects on the corresponding phenomenological modelling approach are presented. Both steps take into account the curing reaction, changes of volume, like chemical shrinkage, and inelastic mechanical behaviour which is temperature and curing dependent. Finally, the simulation strategy for the modelling within a finite element environment is depicted. By this, residual stresses, secondary deformations and loads on the piezo modules can be predicted, which is exemplified by a comparative study verifying a novel manufacturing strategy. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
During metal forming processes, substantial microstructural changes occur in the material due to large plastic deformations leading to different mechanical properties. It is of great interest to predict the behaviour of these materials at different fabriction stages and of the final product. At first glance, the behaviour of metals can be approached by an elastoplastic isotropic material model with a volumetric-deviatoric split and isotropic hardening. In order to perform the calculations, a logarithmic strain is considered in the principal directions of stress and strain space, allowing to make predictions even at finite deformations. Because of the actual nature of metals, the crystalline structure, the deformation at the microstructural level is much more complex. Due to the mathematically algorithmic form of an elastic predictor and a plastic corrector, the elastoplastic model can be extended to crystal plasticity which is similarly handled in terms of a critical resolved shear stress on defined slip planes in the crystal. Hardening can be modelled through a viscoplastic power law. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Machine failure can have a significant impact on the throughput of manufacturing systems, therefore accurate modelling of breakdowns in manufacturing simulation models is essential. Finite mixture distributions have been successfully used by Ford Motor Company to model machine breakdown durations in simulation models of engine assembly lines. These models can be very complex, with a large number of machines. To simplify the modelling we propose a method of grouping machines with similar distributions of breakdown durations, which we call the Arrows Classification Method, where the Two-Sample Cramér-von-Mises statistic is used to measure the similarity of two sets of the data. We evaluate the classification procedure by comparing the throughput of a simulation model when run with mixture models fitted to individual machine breakdown durations; mixture models fitted to group breakdown durations; and raw data. Details of the methods and results of the classification will be presented, and demonstrated using an example.  相似文献   

11.
12.
13.
A mathematical modelling of a shaft-hub press-fit subjected to bending couples applied to the shaft extremities is developed, and the value of the bending couple inducing an undesired shaft-hub incipient detachment is analytically determined. The shaft-hub contact is modelled in terms of two elastic Timoshenko beams connected by a distributed elastic spring, whose stiffness is analytically evaluated. Two models of the distributed spring are considered. The first model expresses the combined deformability of both the shaft and the hub cross sections. The second model accounts for the stiffening effect exerted by the shaft portion protruding from the hub on the adjacent shaft part that is in contact with the hub, and, consequently, it assumes only a rigid body motion of the shaft cross section, thus neglecting its deformability.Based upon this beam-like model, the bending couple producing the incipient detachment between the shaft and the hub is theoretically determined in term of the shaft-hub geometry, of the initial shaft-hub interference, and of the elastic constants. Comparisons with selected Finite Element (FE) forecasts indicate that the first modelling produces an incipient detachment couple that appreciably overrates the FE forecasts, whereas the second modelling lowers the error down to technically acceptable predictions.  相似文献   

14.
The effects of damage of intervertebral discs on their biomechanical behaviour and the factors favouring the progression of instability are studied. Healthy and damaged movement segments are analyzed experimentally and numerically. The aim is to represent and predict the effects of tissue damage and changes in the spine by comparison with healthy segments. Since the intervertebral disc acts as a mechanical damper, relaxation tests are performed in addition to pressure experiments. The experiments are carried out in a bioreactor with tempered nutrient solution. A cultivation period in the bioreactor allows detecting cell viability, solute diffusion rates and gene expression of the discs. Numerically, the nonlinear, viscoelastic, anisotropic and diffusion-dependent behaviour of the intervertebral disc is modelled with the FE-program Abaqus, using a modular material law as a UMAT subroutine. With the measurement results, the relevant parameters can be determined so that the mechanical behaviour of intervertebral discs can be simulated. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Mitotic cells grow in volume and divide themselves into two identical cells producing at macroscopic scale a volume expansion in living bodies. Due to inhomogeneous distributions of the growth factors, growth occurs at different rates and directions. Focusing into the direction of growth, some living bodies alter their growing behaviour influenced by mechanical loads. If loads appear during the growth process, cell division is reorientated following the main direction of the elastic deformations. Therefore, new cells will be created in this direction while relaxing the stress state of the body at the same time. In this work, we present a modelling approach for growing bodies which change their growth direction depending on mechanical loads. The model is implemented into a finite element framework to be an useful tool for predicting morphological changes in growing bodies. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
17.
Several authors have proposed mechanical models to predict long term tooth movement, considering both the tooth and its surrounding bone tissue as isotropic linear elastic materials coupled to either an adaptative elasticity behavior or an update of the elasticity constants with density evolution. However, tooth movements obtained through orthodontic appliances result from a complex biochemical process of bone structure and density adaptation to its mechanical environment, called bone remodeling. This process is far from linear reversible elasticity. It leads to permanent deformations due to biochemical actions. The proposed biomechanical constitutive law, inspired from Doblaré and García (2002) [30], is based on a elasto-viscoplastic material coupled with Continuum isotropic Damage Mechanics (Doblaré and García (2002) [30] considered only the case of a linear elastic material coupled with damage). The considered damage variable is not actual damage of the tissue but a measure of bone density. The damage evolution law therefore implies a density evolution. It is here formulated as to be used explicitly for alveolar bone, whose remodeling cells are considered to be triggered by the pressure state applied to the bone matrix. A 2D model of a tooth submitted to a tipping movement, is presented. Results show a reliable qualitative prediction of bone density variation around a tooth submitted to orthodontic forces.  相似文献   

18.
For a consistent lightweight design the consideration of the nonlinear macroscopic material behaviour of composites, which is amongst others driven by damage and strain-rate effects on the mesoscale, is required. Therefore, a modelling approach using numerical homogenization techniques is applied to predict the effective nonlinear material behaviour of the composite based on the finite element simulation of a representative volume element (RVE). In this RVE suitable constitutive relations account for the material behaviour of each constituents. While the reinforcing glass fibres are assumed to remain linear elastic, a viscoplastic constitutive law is applied to represent the strain-rate dependent, inelastic deformation of the matrix material. In order to analyse the influence of the nonlinear matrix material behaviour on the global mechanical response of the composite, effective stress-strain-curves are computed for different load cases and compared to experimental observations. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
On the macrolevel Metal Matrix Composites (MMCs) resemble a homogeneous material. However, on the microlevel they show an inhomogeneous microstructure. This paper will have how heterogeneities affect the overall properties and the behaviour of a material (i. e. the effective properties). This is done using computational homogenization techniques. Finite element (FE) simulations were conducted in ABAQUS in connection with MATLAB, using material parameters for aluminium alloy AA2124 and SiC to develop a representative volume element (RVE) of the MMC AMC217xe. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A hybrid neural network model is designed to predict the micro-macroscopic characteristics of particulate systems subjected to shearing. The network is initially trained to understand the micro-mechanical characteristics of particulate assemblies, by feeding the results based on three-dimensional discrete element simulations. Given the physical properties of the individual particles and the packing condition of the particulate assemblies under specified loading conditions, the network thus understands the way contact forces are distributed, the orientation of contact (fabric) networks and the evolution of stress tensor during the mechanical loading. These relationships are regarded as soft sensors. Using the signals received from soft sensors, a mechanistic neural network model is constructed to establish the relationship between the micro-macroscopic characteristics of granular assemblies subjected to shearing. The macroscopic results obtained form this hybrid mechanistic neural network modelling for data that were not part of the training signals, is compared with simulations based on discrete element modelling alone and in general, the agreement is good. The hybrid network responds to their inputs at a high speed and can be regarded as a real-time system for understanding the complex behaviour of particulate systems under mechanical process conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号