首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
Seven new cholesteric monomers (M-1M-7) and the corresponding smectic comblike polymers containing cholesteryl groups (P-1P-7) were synthesized. The chemical structures and purity were characterized by FT-IR, 1H NMR, and elemental analyses. The specific optical rotations were evaluated with a polarimeter. The mesomorphism was investigated by polarizing optical microscopy, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction. The specific optical rotation values of these monomers and polymers with the same numbers of phenyl ring and terminal groups were nearly equal, however, they decreased with increasing the aryl numbers in the mesogenic core. M-1M-7 showed oily streak texture and focal conic texture, or fingerprint texture, or spiral texture of cholesteric phase. P-1P-7 showed the smectic A phase. The melting, clearing, and glass transition temperatures increased, and the mesophase temperature ranges widened with increasing the aryl number in the mesogenic core. Surprisingly, although the molecular structures of M-6 and M-7 were similar to those of M-4, namely the mesogenic cores contained three phenyl rings, their phase behavior had a considerable difference, and Tm and Ti of M-6 and M-7 were less than those of M-4. In addition, M-6 and M-7 also showed an obvious glass transition. TGA showed that all the polymers had good thermal stabilities.  相似文献   

2.
The synthesis is described of four new chiral liquid crystalline monomers (M2–M5 ) and their corresponding side‐chain homopolysiloxanes (P2–P5 ) containing menthyl groups. Chemical structures were characterised using FT‐IR or 1H NMR spectra, and specific optical rotations were evaluated with a polarimeter. The phase behaviour and mesomorphic properties of the new compounds were investigated by differential scanning calorimetry, thermogravimetric analysis, polarising optical microscopy, UV/visible/NIR spectrocopy and X‐ray diffraction. The monomers and homopolymers with more aryl segments showed noticeably lower specific optical rotation value. The monomers M2–M5 formed a cholesteric or blue phase when a flexible spacer was inserted between the rigid mesogenic core and the terminal menthyl groups by reducing the steric effect. M2–M5 revealed enantiotropic cholesteric phase. Moreover, M2 also exhibited a monotropic smectic A (SmA) phase, and M4 also exhibited a cubic blue phase on cooling. The selective reflection of light shifted to the long wavelength region with increasing rigidity of the mesogenic core for M2–M5 . P2–P5 exhibited SmA phases, and the mesogenic moieties were ordered in smectic orientation with their centres of gravity in planes. Melting or glass transition temperature and the clearing temperature increased, and the mesophase temperature range widened with increasing rigidity of the mesogenic core.  相似文献   

3.
The synthesis of new chiral monomers (M1 ?M3 ) based on menthol and the corresponding polyacrylates (P1 ?P3 ) is described. The chemical structures, formula and phase behaviour of the obtained monomers and polymers were characterised with FT-IR, 1H-NMR, elemental analyses, differential scanning calorimetry (DSC), polarising optical microscopy (POM) and X-ray diffraction (XRD). The effect of the mesogenic core rigidity, spacer length and menthyl steric effect on the phase behaviour of M1 ?M3 and P1 ?P3 is discussed. The expected mesophase of the compounds based on menthol can be obtained by inserting a flexible spacer between the mesogenic core and the terminal groups. For the chiral monomers and polyacrylates, their corresponding melting temperature (T m), glass transition temperature (T g) and clearing temperature (T i) increased with an increase of the mesogenic core rigidity; while the T m, T g and T i decreased with increasing the spacer length. M1 and P1 showed no mesophase, while M2 and M3 all revealed a SmC* and cholesteric phases. P2 and P3 only showed a cholesteric phase.  相似文献   

4.
The synthesis of four new chiral mesogenic monomers (M1–M4) and side chain ferroelectric liquid crystalline polymers containing (2S, 3S)-2-chloro-3-methylpentanoate is described. The chemical structures and phase behaviour of the monomers and polymers obtained in this study were characterised by Fourier transform infrared, proton nuclear magnetic resonance, polarising optical microscopy, differential scanning calorimetry, thermogravimetric analysis and X-ray diffraction. The selective reflection of light was investigated with ultraviolet/visible (UV/Vis). Their structure–mesomorphism relationships were discussed. M1 and P1 all showed a chiral smectic C (SmC*) phase. M2 and M3 revealed a SmC* phase and cholesteric phase, while their corresponding polymers P2 and P3 revealed a SmC* phase and smectic A (SmA) phase. M4 only exhibited a cholesteric phase, whereas the corresponding polymers P4 showed a SmA phase. Moreover, the selective reflection of light shifted to the long-wavelength region at the SmC* phase range and to the short-wavelength region at the cholesteric range with increasing temperature, respectively. The results seemed to demonstrate that the tendency towards melting temperature (Tm), glass transition temperature (Tg), isotropic temperature (Ti) and mesophase range for the monomers and polymers increased by increasing the mesogenic core rigidity or the number of phenyl ring. The polymerisation effect could lead to higher liquid crystalline to isotropic phase transition temperature, wider mesophase range and more ordered smectic phase formed. In addition, all the obtained polymers had a very good thermal stability and the corresponding Td increased by increasing the number of phenyl ring.  相似文献   

5.
New cholesteric monomers (M2−M5) and the corresponding smectic homopolymers (P2−P5) based on menthyl groups were synthesized. The chemical structures were characterized by Fourier transform infrared and 1H NMR. The specific optical rotations were evaluated with a polarimeter. The structure–property relationships of the new compounds are discussed. The mesomorphism was investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction. The selective reflection property of light was studied with UV/Visible/NIR. The monomers M2−M5 formed the cholesteric or blue phase when a flexible link chain was inserted between the mesogenic core and the terminal menthyl groups by reducing the steric effect. M1 showed no mesomorphism, while M2−M5 revealed enantiotropic cholesteric phase. In addition, M2 and M3 also showed a cubic blue phase on cooling. The selective reflection of light for M2−M5 shifted to the short reciprocal wavelength region with increasing the temperature or intramolecular spacer length. P2−P5 exhibited the smectic A phase. The melting, clearing, and glass transition temperatures increased when increasing the aryl number in the mesogenic core or decreasing the intramolecular spacer length.  相似文献   

6.
含薄荷基的手性液晶单体的合成、结构与性能研究   总被引:1,自引:0,他引:1  
胡建设  刘聪  孟庆宝  王翔 《化学学报》2009,67(14):1668-1674
合成了五种新型含薄荷基的手性单体(M1~M5), 它们的结构、纯度及旋光性质通过了1H NMR, FT-IR、元素分析仪及旋光仪等手段的表征, 采用DSC, POM, UV/Vis/NIR等研究了单体的介晶性能、相行为及选择反射性能. 结果表明: 单体的比旋光度值随苯环数目的增加而降低, 通过在薄荷基与液晶核之间引入柔性间隔基元, 实现了含薄荷基单体具有液晶性能的目的. 除M1外, 其余四种单体均呈现手性近晶C (SC*)相和胆甾(Ch)相, 此外M5还出现了蓝相织构. M2~M4只在SC*相区能观察到选择反射现象, 而M5在SC*相区和Ch相区均出现明显的选择反射现象, 且随温度的升高, SC*相区的反射波长发生“红移”, 而Ch相区的反射波长则发生“蓝移”. 随着液晶核刚性的增加, 对应单体的熔点和清亮点增大, 液晶相范围变宽. 液晶核中的酯基桥键与组合方式也对单体的熔点和清亮点具有一定的影响.  相似文献   

7.
A series of new chiral monomers (M1–M4) and the corresponding siloxane polymers (P1–P4) containing menthyl groups were synthesised to establish the relationship between their structure and liquid crystalline properties. The effect of the mesogenic core rigidity and the spacer length on the phase behaviour of the monomers and polymers obtained in this study was discussed. The selective reflection of light for the chiral monomers was studied with UV-Vis spectrometer. Polarising optical microscopy, differential scanning calorimetry, X-ray diffraction and thermogravimetric analysis were used to characterise the phase behaviour and thermal stabilities. It was found that these chiral monomers and polymers were beneficial for the formation of the mesophases when a flexible spacer was inserted between the mesogenic core and terminal menthyl groups. M1–M3 showed enantiotropic chiral smectic C phase and cholesteric phase, and monotropic cubic blue phase on cooling cycle. M4 only showed cholesteric phase. P1–P4 showed a smectic A phase. With increasing the mesogenic core rigidity or decreasing the spacer length, the corresponding melting temperatures, glass transition temperatures and isotropic temperatures all increased.  相似文献   

8.
To study structure–mesomorphism relationships of the monomers and polymers based on menthol, four new chiral monomers ( M1 – M4 ) and the corresponding homopolymers ( P1 – P4 ) with menthyl group were synthesized. Their chemical structures, formula, phase behavior, and thermal stability were characterized by FTIR, 1H NMR, 13C NMR, elemental analyses, differential scanning calorimetry, polarizing optical microscopy, X‐ray diffraction, and thermogravimetric analysis. The selective reflection of light was investigated with ultraviolet/visible spectrometer. The influence of the mesogenic core rigidity, spacer length, and menthyl steric effect on the mesomorphism of M1 – M4 and P1 – P4 was examined. By inserting a flexible spacer between the mesogenic core and the terminal menthyl groups, four target monomers and polymers could form the expected mesophase. Moreover, their melting temperature (Tm), glass transition temperature (Tg), clearing temperature (Ti), and mesophase range (ΔT) increased with increasing the mesogenic core rigidity; whereas the Tm and Tg decreased, Ti and ΔT increased with an increase of the spacer length. M1 and M2 showed monotropic and enantiotropic cholesteric phase, respectively, whereas M3 and M4 all revealed chiral smectic C (SmC*), cholesteric and cubic blue phases. In addition, with increasing temperature, the selective reflection of light shifted to the long wavelength region at the SmC* phase range and to the short wavelength region at the cholesteric range, respectively. P1 and P2 only showed a smectic A (SmA) phase, whereas P3 and P4 exhibited the SmC* and SmA phases. All the obtained polymers had very good thermal stability. © 2012 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym Chem, 2012  相似文献   

9.
A series of new and high-purity hydrocarbon liquid crystal monomers were synthesized through the acylation reaction, deoxygenation reaction, and Grignard reaction. 1H-NMR spectra and elemental analyses were used to examine their purity. The liquid crystalline polysiloxane polymers were obtained by grafting the monomers onto poly(methylhydrosiloxane). The thermal transition temperature, mesomorphic properties, and mesophase textures of the monomers and the polymers were determined by differential scanning calorimetry (dsc), polarized optical microscopy, and X-ray diffraction analysis. Moreover, we observed the even–odd effect of the smectic/isotropic transition temperature with the length variation of the substituents. In this study, we found by X-ray diffraction that the liquid crystalline polysiloxane polymers undergo a transition from smectic B to smectic E mesophase. However, dsc has difficulty detecting the phase transition process. By considering the spin–lattice relaxation time (T1), we can systematically explain the relation between the flexibility of the substituent with the smectic/isotropic transition temperature. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2849–2863, 1998  相似文献   

10.
A new cholesterol side-functionalised polycarbonate was synthesised through a coupling reaction between the terminal carboxyl group of the monomer 6-cholesteroxy-6-oxocaproic acid (COHA) and side hydroxyl group of the polycarbonate (PHTMC). The chemical structures of the intermediate compounds, monomers and polymers obtained in this study were characterised with FT-IR and 1H NMR spectrum. Their phase behaviour and thermal stability were investigated using polarising optical microscopy, differential scanning calorimetry, X-ray diffraction and thermogravimetric analysis. The monomer COHA showed a cholesteric phase, while the corresponding cholesterol side-functionalised polycarbonate P(TMC-g-COHA) revealed a smectic A phase. This behaviour was attributed to an increased density of the mesogenic units in side chain and hence an ordered organisation into the mesophase. Furthermore, P(TMC-g-COHA) could exhibit a liquid crystalline state below body temperature (≈37°C). This fact indicated it could be used clinically as a self-assemble material with orientational-order mesophase. In addition, P(TMC-g-COHA) had a good thermal stability, the corresponding thermal decomposition temperature was 241°C.  相似文献   

11.
The synthesis of new chiral monomers (M1M5) and the corresponding smectic homopolymers (P1P5) containing menthyl groups is described. The chemical structures and purity were characterized by FT-IR, 1H NMR and elemental analyses. The specific optical rotations were evaluated with a polarimeter. The phase behavior and mesomorphism were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction. The selective reflection property of light was studied with UV/visible/NIR. The monomers M2M5 formed a chiral smectic C , and cholesteric or blue phase when a flexible linkage chain was inserted between the mesogenic core and the terminal menthyl groups by reducing the steric effect. M1 showed no mesomorphism, while M2M5 showed enantiotropic and cholesteric phases. Moreover, M5 also exhibited a cubic blue phase on cooling. With increasing temperature, the selective reflection of light shifted to the long wavelength region at the phase range, and to the short wavelength region at the cholesteric phase range, respectively. The homopolymers P1P5 all exhibited the batonnet textures of a smectic A phase. The melting, clearing, and glass transition temperatures increased, and the mesophase temperature ranges widened with increasing the aryl number in the mesogenic core.  相似文献   

12.
A mesogenic crosslinking agent M-1 was synthesized to minimize the perturbations of non-mesogenic crosslinking agents in liquid crystalline elastomers. The synthesis of new side chain liquid crystalline elastomers containing the rigid mesogenic crosslinking agent M-1 and nematic monomer M-2 by a one-step hydrosilylation reaction is described. The chemical structures of the monomers and network polymers obtained were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties and phase behaviour were investigated by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The influence of the crosslinking units on phase behaviour is discussed. Liquid crystalline elastomers containing less than 15 mol % of the crosslinking units showed elasticity, reversible phase transitions and a threaded texture. The experimental results demonstrated that the glass transition temperature of polymers P-1-7 increased with increasing concentration of crosslinking agent M-1; but the isotropic temperature and liquid crystalline range decreased slightly.  相似文献   

13.
Recently, new thermotropic ionic liquid crystals (LCs) with a hexyl-linked tris(imidazolium bromide) core and two terminal alkyl chains were synthesised and characterised. To explore the effect of different counter-ions on the LC behaviour of this system, derivatives with BF4? and Tf2N? counter-ions were prepared and analysed. Five of the BF4? derivatives were found to exhibit thermotropic LC behaviour. The 12-, 14- and 16-carbon tail BF4? compounds form SmA phases. The 18- and 20-carbon tail homologues form what appears to be a smectic phase but are weakly mesogenic and harder to characterise. Only two of the Tf2N? derivatives exhibited mesogenic behaviour. The 18-carbon tail Tf2N? compound forms an as-yet unidentified, highly periodic smectic phase with positional order while the 20-carbon tail homologue forms a periodic SmA phase. The Tf2N? mesogens have much lower clearing points even though their LC phases have more order than the Br? and BF4? mesogens. X-ray diffraction showed that these mesogens have different amounts of tail interdigitation between the smectic layers depending on the counter-ion present. Atomistic molecular dynamics simulations indicated that counter-ion size plays an important role in defining the density of the ionic region, which in turn affects the amount of interdigitation in the smectic phases.  相似文献   

14.
《Liquid crystals》1997,22(6):669-677
The synthesis of side chain liquid crystalline polysiloxanes containing oligooxyethylene spacers and ( S )-2-methylbutyl 4-\[(4-oxybiphenyl-4-yl)carbonyloxy]-3-fluorobenzoate mesogenic side groups is presented. Differential scanning calorimetry, optical polarizing microscopy and X-ray diffraction measurements reveal liquid crystalline properties for all synthesized monomers and polymers. All three precursor olefinic monomers reveal cholesteric and smectic A phases. The olefinic monomer which contains two oligooxyethylene units in the spacer is the only one which reveals a twist grain boundary A phase and a blue phase, besides the cholesteric and smectic A phases. All three polysiloxanes present enantiotropic smectic A and chiral smectic C phases. The mesomorphic behaviours of the monomers and polymers are compared with those of the corresponding monomers and polymers without the lateral fluoro substituent. The results seem to demonstrate that incorporating a lateral fluoro substituent in the mesogenic cores of the monomers affects not only the mesophase thermal stability, but also the nature of the mesophases formed. However, incorporating a lateral fluoro substituent in the mesogenic cores of the polymers affects only the thermal stability of the mesophases formed. The lateral fluoro substituent has a more profound effect on the mesomorphic behaviour for the monomers than that for the polymers.  相似文献   

15.
Abstract

Backbone anisotropy and the structure of the mesophases of a series of side-chain liquid crystal polymers have been studied in the bulk by neutron scattering. The backbone conformation is obtained by small-angle neutron scattering on mixtures of hydrogenous polymers with deuteriated backbones. The components of the radius of gyration parallel, R and perpendicular, R ∥ to the magnetic field are determined as a function of temperature for both the nematic phase and the smectic phase. It is shown that the polymer backbone is deformed in both phases. When the polymer exhibits only a nematic phase, it adopts a prolate conformation, where the average backbone direction is more or less parallel to the aligned mesogenic groups. Upon transition from the smectic phase to a nematic phase, the backbone in the nematic phase assumes a slightly oblate shape. This tendency towards oblate shape is due to the smectic fluctuations which are always present in such nematic phases. The exentricity of the oblate backbone conformation in the smectic phase is always larger than in the nematic phase. This is attributed to a periodic distribution of the backbone between the mesophase layers. Then, the backbone anisotropy depends not only on the smectic structure (SA1, SAd), but also on the temperature dependence of the density of aligned mesogenic groups in the layers. On the other hand, it is shown that the isotopic mixtures are no longer ideal when polymers deuteriated in the mesogenic moieties are mixed with the corresponding hydrogenous polymers.  相似文献   

16.
A series of liquid crystalline homopolysiloxanes and copolysiloxanes were synthesized. The chemical structures of the monomers M1-M7 were confirmed by FTIR and 1H NMR spectroscopy. The structure-property relationships of the monomers and polymers are discussed; their phase behaviour and optical properties were investigated by differential scanning calorimetry, thermogravimetric analysis, and polarizing optical microscopy. All the monomers, except M2 and M7 showed smectic and nematic phases; the copolymers P8-P15 displayed cholesteric phases. The homopolymers P1-P7 exhibited smectic phases. The selective reflection of cholesteric monomers and copolymers shifted to longer wavelengths with increasing length of the rigid mesogenic core, with decreasing length of the flexible spacer, or with increasing content of nematic units. Experimental results demonstrated that a flexible polymer backbone, a rigid mesogenic core and a long flexible spacer tended to produce a lower glass transition temperature, higher thermal stability, and wider mesophase temperature range.  相似文献   

17.
A series of new chiral smectic liquid crystalline elastomers was prepared by graft polymerization of a nematic monomer with a chiral and non‐mesogenic crosslinking agent, using polymethylhydrosiloxane as backbone. The chemical structures of the monomers and polymers obtained were confirmed by FTIR and 1H NMR. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. Monomer M 1 showed a nematic phase during heating and cooling. Polymer P 0 exhibited a smectic B phase; elastomers P 1P 3 showed the smectic A phase, P 4P 6 showed a chiral smectic C(SmC*), and P 7 displayed stress‐induced birefringence. Elastomers containing less than 15?mol?% M 2 displayed elasticity, reversible phase transitions with wide mesophase temperature ranges, and high thermal stability. With increasing content of the crosslinking unit, glass transition temperatures first increased, then fell, then increased again; isotropization temperatures and mesophase temperature ranges steadily decreased.  相似文献   

18.
Chiral monomer (M1 ), mesogenic and non-mesogenic crosslinking agents (C1 and C2 ), and the corresponding liquid crystalline elastomers (P1 and P2 series), have been synthesised. Their chemical structures have been characterised by Fourier transform infrared or 1H nuclear magnetic resonance and their phase behaviour investigated by differential scanning calorimetry, polarising optical miscoscopy, thermo-gravimetric analysis (TGA) and X-ray diffraction. The effect of the crosslinking unit on the phase behaviour of the elastomers has been studied. M1 showed a cholesteric oily streak and focal conic texture. C2 exhibited a nematic enantiotropic thread-like and schlieren texture, and a monotropic fan-shaped texture in the SA phase. Due to the introduction of the mesogenic crosslinking unit, elastomers, P2-1 ?P2-5 , exhibited a cholesteric phase, while elastomers, P1-1 ?P1-4 , derived from a non-mesogenic crosslinking unit, exhibit a SA phase. As the content of the crosslinking unit increased, the T g of the P1 series initially decreased and then increased, and the T i of the series decreased. In the P2 series the T g increased, but the T i initially increased and then decreased. TGA confirmed that all the elastomers had improved thermal stability.  相似文献   

19.
Several new side‐chain liquid crystalline (LC) polysiloxanes and elastomers ( IP ‐ VIP ) bearing fluorinated mesogenic units and crosslinking mesogens were synthesized by a one‐step hydrosilylation reaction with poly(methylhydrogeno)siloxane, a fluorine‐containing LC monomer 4′‐undec‐10‐enoyloxy‐biphenyl‐4‐yl 4‐fluoro‐benzoate and a crosslinking LC monomer 4′‐(4‐allyloxy‐benzoxy)‐biphenyl‐4‐yl 4‐allyloxy‐benzoate. The chemical structures and LC properties of the monomers and polymers were characterized by use of various experimental techniques such as FTIR, 1H‐NMR, EA, TGA, DSC, POM and XRD. The effect of crosslinking mesogens on mesomorphic properties of the fluorinated LC polymers was studied as well. The obtained polymers and elastomers were soluble in many solvents such as toluene, tetrahydrofuran, chloroform, and so forth. The temperatures at which 5% weight loss occurred (Td) were greater than 250°C for all the polymers, and the weight of residue near 600°C increased slightly with increase of the crosslinking mesogens in the fluorinated polymer systems. The samples IP , IIP , IIIP and IVP showed both smectic A and nematic phases when they were heated and cooled, but VP and VIP exhibited only a nematic mesophase. The glass transition temperature (Tg) of polymers increased slightly with increase of crosslinking mesogens in the polymer systems, but the mesophase–isotropic phase transition temperature (Ti) and smectic A–nematic mesophase transition temperature (TS‐N) decreased slightly. It suggests that the temperature range of the mesophase became narrow with the increase of crosslinking mesogens for all the fluorinated polymers and elastomers. In XRD curves, the intensity of sharp reflections at low angle decreased with increase of crosslinking mesogens in the fluorinated polymers systems, indicating that the smectic order derived from fluorinated mesogenic units should be destroyed by introduction of more crosslinking mesogens. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

Three acrylate side-chain polymers in which the mesogenic moieties are based on the 4-n-alkoxyphenyl-4′-(4″-methylhexyloxy) benzoates have been characterized by differential scanning calorimetry, optical microscopy and X-ray diffraction. For shorter flexible spacers (n = 2) both smectic A and C* phases are observed thus making this polymer interesting for the fabrication of electro-optical devices based on ferroelectric properties (a smectic A phase is required for alignment purposes). For longer flexible spacers, (n = 6, 11) only the smectic A phase remains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号