首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Anisotropic orientation states in materials such as liquid crystals, liquid crystalline polymers or polymeric electrets can be induced by the application of electric fields. This behaviour is exploited extensively in displays or sensors. Anisotropic optical properties induced by relatively high electric field strengths are used in the well known displays made from liquid crystalline materials. The anisotropy of electric properties in polymeric materials gives rise to properties such as the high piezoelectricity of fluorine containing electrets. Attempts have been made to investigate the orientational state induced by electric fields after poling using NMR techniques. However, there is only access to the irreversible part of the electrically induced orientation. In-situ application of (high) voltages during NMR experiments enables the investigation of the influence of the electric field on molecular orientational states or electrically-induced morphological changes. The NMR methods have been modified to investigate the dynamics of reorientation processes in electric fields and to extend the possible time range towards below1ms. The application of high voltages in NMR experiments requires experimental specifications. Some of our experiences are outlined in this paper.  相似文献   

2.
Abstract

The magnetic field reorientation of an initially aligned sample of a nematic polymer liquid crystal was followed by proton NMR. Evolution to a metastable (banded) state was considered using a Rheo-NMR technique developed previously. Late stage reorientation was studied by taking into account the dynamics of defects following the formation of splay–bend walls. NMR spectra simulation allowed us to obtain the wall density as a function of time. This result, together with a defect-controlled wall dissolution model proposed by Rey [1], was used to complement the Rheo-NMR technique of measuring the viscoelastic parameters of nematic polymer liquid crystals.  相似文献   

3.
Electro-optically active polymer–liquid crystal composites based on ferroelectric liquid crystals and stretched porous polyethylene films were developed. The alignment of ferroelectric liquid crystals incorporated into the porous polyethylene films with average porous diameter of around 200 nm was observed and studied. It was shown experimentally that these samples containing ferroelectric liquid crystals are flexible electro-optical films exhibiting a saturation electric field near 2·10Vm?1 and a response time of about 30 μs under the action of the saturation field. A simple theoretical model of ferroelectric liquid crystal molecules' complete reorientation in electric fields inside pores of the films has been proposed and confirmed experimentally.  相似文献   

4.
《Liquid crystals》1998,25(6):745-755
Two-dimensional Raman scattering is presented as a technique for the monitoring of electric field-induced, submolecular reorientation in liquid crystals. The motions of the flexible part and the rigid core of 4-pentyl-(4-cyanophenyl)cyclohexane (PCH5) are independently monitored in response to both step and oscillatory electric fields. Step voltage experiments show that the flexible group reorients before the rigid core. Also, oscillatory electric field experiments demonstrate that the flexible and rigid groups reorient asynchronously. In fact, at periodicities that are shorter than the bulk reorientation times, it is observed that the reorientation of the flexible part is amplified, while the motion of the rigid core is inhibited. The data suggest that the flexible group possesses a small, local dielectric anisotropy that can couple with the electric field to induce an independent, cooperative reorientation when the mobility of the rigid core is restricted.  相似文献   

5.
Series of novel star-shaped liquid crystals containing [1,1?-biphenyl]-4,4?-diyl diisonicotinate mesogens with various counterions (Br?, B-SO3?,C-SO3?,H2PO4?, BF4?) have been synthesized and characterized, which display a nematic phase. The molecular structures of the liquid crystals, thereof consisting of rod-like mesogens linked together by different long alkyl spacers to a small disc-like core of central benzene-1,3,5-triyl triisonicotinate, have been fully characterized by 1H NMR. Their thermal and supramolecular organization behaviours have been studied by combining polarized optical microscopy, differential scanning calorimetry and small-angle X-ray scattering. These investigations showed that the mesophase temperature range increased with increasing alkyl chain length and the clearing point decreased with increase of anion size. These star-shaped liquid crystals have a long and ordered molecular structure, the electron delocalization of the π-π stacking conjugation effect and the electrostatic attraction of ionic make them have good ferroelectric properties and ionic conductivity properties. The interest in preparing ionic liquid crystal with a nematic phase lies in the technological applications as it is well known that the nematic phase has the highest fluidity of all liquid crystalline phases and hence the possibility to align it by applying an external electric/magnetic field, commonly used in electro-optical devices.  相似文献   

6.
Abstract

Many liquid crystals are found to have relatively high birefringence (Δn) values in the microwave and millimeter wave regions, as calculated from the phase shift induced by their reorientation by magnetic or electric fields. At 30 GHz, Δn values were obtained in the range of 0.08 to 0.18 for eleven liquid crystal mixtures of various types. The most favourable liquid crystal structures for high millimeter wave birefringence are highly conjugated rod-like molecules containing biphenyl, terphenyl, phenylpyrimidine, biphenylpyrimidine, and tolane groups in nematics of positive dielectric anisotropy (Δε). However, other liquid crystal structures including Schiffs base, azoxybenzene, and aromatic ester groups also have substantial birefringence, including nematics with negative and crossover Δε, as well as cholesteric nematics. The Δn varied only slightly at different frequencies of microwave millimeter wave in the 15–94 GHz range. Studies on magnetic and electrical field liquid crystal orientation in specially designed waveguides provide a basis for new types of modulators and scanning array antennae in the millimeter wave region, where more compact liquid crystal modulation media can be used than in the microwave region. These scanners can be used for both sending and receiving radar signals for potentially low cost radar systems.  相似文献   

7.
Abstract

Chiral liquid crystals exhibit molecular optical activity in the isotropic phase. We have studied the evolution of the optical activity as a function of an applied electric field on a 76·2 μm film of the chiral liquid crystal W7, which exhibits an isotropic–smectic A transition at approximately 40°C. We measured the optical activity by recording the rotation of the plane of polarization of an incident linearly polarized ray of light, provided by a He–Ne laser. The applied biasing electric field is parallel to the direction of the incident beam. We find that at 41·0°C, the plane of polarization shifts from ?1·1° for an applied voltage of 30 V to a maximum of ?4·0° at 70 V. The absolute value of the signal decreases beyond this voltage. These shifts are in the direction of the smectic A phase and are in general larger than those observed as a function of temperature. Close to the isotropic–smectic A phase transition, molecules inside the liquid coalesce to form dynamic coherent groups, which have smectic nature. These groups are randomly oriented with respect to each other in the absence of an electric field. The application of an electric field causes the molecules within these groups to align along the direction of the field and to contribute coherently to the optical activity of the system. The way the molecules align with the field depends on the relative values of the polarizability α, which contributes to the alignment of the long axis of the molecule, and the dipole moment p, which contributes to the alignment of the short axis of the molecule. Our preliminary results and calculations suggest that for small fields, the electric field couples with the dipole moment p, whereas for fields in excess of 70 V, the field couples with the polarizability of the long axis of the molecule, causing a rotational reorientation of the molecules in the isotropic phase. The value of the field at which this reorientation occurs may be controlled by temperature.  相似文献   

8.
Abstract

The spectral densities of motion for the aromatic and chain deuterons of the discotic mesogen hexahexyoxytriphenylene (THE6) have been reported in the literature for a frequency of 46 MHz. Most spectral densities Jp (pω0, 90°) have been obtained from samples consisting of a planar distribution of domains in which the directors were perpendicular to the magnetic field Limited data Jp (pω0) have also been available from single-domain samples with the director aligned parallel to the magnetic field. We have applied the small-step rotational diffusion model of Nordio et al. to the data from the aromatic deuterons of THE6-ard in its uniaxial columnar Dho phase, to describe the spinning (D , rotational diffusion constant about the planar normal to the disc) and the tumbling (D?, rotational diffusion constant of the planar normal) motions of the molecular core. Although this model has been successfully used for rod-like nematic liquid crystals, its use has not been attempted for discotic liquid crystals. The model seems to indicate that molecular reorientation has slowed down in the Dho phase, giving frequency dependence to the spectral densities. This can be explained by the high orientational order of the molecules. We are able to account for the four spectral densities J 10), J 10, 90°), J 2 (2ω0) and J 2(2ω0, 90°) with a calculated ratio D∥/D? of about 1. This is quite different from that of rodlike liquid crystals.  相似文献   

9.
Electron beam-induced polymerization of trimethylolpropane triacrylate (TMPTA) and its methacrylate analog (TMPTMA) was studied using nuclear magnetic resonance (NMR) relaxation time measurements. Free induction decays (FID) of partially polymerized samples consist of a short Gaussian component and a longer component comprised of a distribution of simple exponentials. The relative intensity of the Gaussian component increases with radiation dose. T1 and T values were measured as a function of temperature and radiation dose. The relaxation is due primarily to methyl group reorientation at low temperatures, ethyl group reorientation at intermediate temperatures, and whole-molecule reorientation at high temperatures. In both compounds, the T1 and T values at the high temperature minima increase with increasing dose, and the minima values can be used to estimate the degree of polymerization. The temperature at which the T minimum occurs increases with dose, suggesting an increase in the glass transition temperature, Tg, with polymerization. The polymerization appears to have very little effect on the low temperature CH3 reorientation in TMPTA. In TMPTMA the polymerization appears to reduce the mobility of the methacrylate methyl groups.  相似文献   

10.
We describe three anisotropic ultrafast (UF) QUadrupolar Ordered SpectroscopY (QUOSY) 2D-NMR experiments (referred to as ADUF 2D NMR spectroscopy) designed for recording the 2H homonuclear 2D spectra of weakly aligned (deuterated) solutes in sub-second experiment times. These new ADUF 2D experiments derive from the Q-COSY, Q-resolved and Q-DQ 2D pulse sequences (J. Am. Chem. Soc. 1999 , 121, 5249) and allow the correlation between the two components of each quadrupolar doublet, and then their assignment on the basis of 2H chemical shifts. The UF 2D pulse sequences are analyzed by using the Cartesian spin-operator formalism for spin I=1 nuclei with a small quadrupolar moment. The optimal experimental/practical conditions as well as the resolution, sensitivity and quantification issues of these ADUF 2D experiments are discussed on comparison to their conventional 2D counterparts and their analytical potentialities. Illustrative ADUF 2D experiments using deuterated achiral/prochiral/chiral solutes in poly-γ-benzyl-L-glutamate based chiral liquid crystals are presented, as well as the first examples of natural abundance deuterium (ANADUF) 2D spectrum using 14.1 T magnetic field and a basic gradient unit (53 G.cm−1) in oriented solvents.  相似文献   

11.
Abstract

It is known that an optical phase grating can be obtained when two mutually coherent laser beams overlap in a nematic liquid crystal. This is mainly due to director reorientation which contributes to a large optical non-linearity. It has been suggested by Herman and Serinko that a phase grating could be obtained in nematic liquid crystals if a D.C. field is used to bias it near the critical orientational Freedericksz transition. A homeotropic MBBA film biased by an electric field at 1 kHz has been studied. Two weak Ar+ laser beams were incident normally to the film with a small intersection angle (?0·4?). Using the picture of a director reorientation mechanism and a degenerate four wave mixing scheme, we have obtained the dependence of the diffraction beam intensity on that of the incident beam and the strength of the biased electric field. The theoretical prediction and experimental results both show that the phase grating diffraction can be dramatically enhanced by the coupling of the electric field to the optical field in the Freedericksz transition region. This is due to the critical behaviour of the sample at that transition. The prominently improved signal-to-noise ratio is discussed.  相似文献   

12.
《Liquid crystals》1998,24(5):775-782
Detailed experimental results of a systematic investigation of the dynamics of the in-plane smectic layer reorientation in SmC* ferroelectric liquid crystals on application of different types of asymmetric electric fields are reported. The reversible reorientation of smectic layers is characterized as a function of field asymmetry, electric field amplitude, frequency, cell gap and temperature. On the basis of the observed behaviour we discuss a phenomenological interpretation of the smectic layer reorientation in terms of dominant influences director switching, convection due to ionic motion and liquid crystal substrate interactions which limit the rotation to the amount of twice the tilt angle.  相似文献   

13.
Density and refractive index measurements in the discotic liquid crystal hexaheptyloxytriphenylene were performed in the hexagonal columnar Colho and isotropic I phases. The temperature dependence of the density ρ(T) for this compound was obtained by combining small angle X-ray data and capillary methods. The ordinary n o extraordinary n e and isotropic liquid n i refractive indices were measured using a modified Abbe refractometer to an accuracy of about 10?3. To check the consistency of the density and the refractometry experiments we used the Lorentz–Lorenz relation. An anomaly in the empirical relationship at the Colho–I phase transition, which holds for many uniaxial liquid crystals, was detected. A discrepancy between low birefringence Δn~0.109 and a relatively high local electric field anisotropy for hexaheptyloxytriphenylene is discussed.  相似文献   

14.
In this work we report results from continuous-wave (CW) and pulsed electron paramagnetic resonance (EPR) and proton nuclear magnetic resonance (NMR) studies of the vanadium pentoxide xerogel V2O5:nH2O (n ≈ 1.6). The low temperature CW-EPR spectrum shows hyperfine structure due to coupling of unpaired V4+ electron with the vanadium nucleus. The analysis of the spin Hamiltonian parameters suggests that the V4+ ions are located in tetragonally distorted octahedral sites. The transition temperature from the rigid-lattice low-temperature regime to the high temperature liquid-like regime was determined from the analysis of the temperature dependence of the hyperfine splitting and the V4+ motional correlation time. The Electron Spin Echo Envelope Modulation (ESEEM) data shows the signals resulting from the interaction of 1H nuclei with V4+ ions. The modulation effect was observed only for field values in the center of the EPR absorption spectrum corresponding to the single crystals orientated perpendicular to the magnetic field direction. At least three protons are identified in the xerogel by our magnetic resonance experiments: (I) the OH groups in the equatorial plane, (ii) the bound water molecules in the axial V=O bond and (iii) the free mobile water molecules between the oxide layers. Proton NMR lineshapes and spin-lattice relaxation times were measured in the temperature range between 150 K and 323 K. Our analysis indicates that only a fraction of the xerogel protons contribute to the measured conductivity.  相似文献   

15.
We present a study of the evolution of the transient periodic pattern in the nematic director field reorientation in the magnetic non-Fréedericksz twist geometry. The stability of the uniform director field reorientation with respect to periodic perturbations is studied as a function of the magnetic field H, the angle α between H and the initial homogeneous nematic director n0 (H not normal to n0) and the nematic viscoelastic parameters. The results predict that for α < π/2, the amplitude of the periodic modes becomes damped after a critical time and eventually fade away and consequently does not give way to periodic inversion walls as in the Freedericksz geometry (α = π/2). Also for α < π/2, it is predicted that the selected periodic modes have progressively smaller wave vectors as the director reorients back to equilibrium. The amplitude becomes damped earlier and the wave vector of the periodic pattern decreases faster with time when the magnetic field acts away from the normal to the initial director.  相似文献   

16.
The effects of crosslinking polymer networks (PNs) on the molecular reorientation and electro‐optical properties of vertically aligned (VA) liquid crystal (LC) devices are investigated by applying an in‐plane switching (IPS) electric field. Through the polymerization process, crosslinking PNs are developed on the substrate surface, effectively increasing the anchoring energy and governing the LC molecular reorientation. With its stronger anchoring effect, the PNs cell shows good light transmittance and excellent vertical alignment quality, as compared to the pure LC cell. Furthermore, the alignment transformation and transmittance bounce resulting from the transient process of LC molecular reorientation are eliminated when the cell is operated at high voltages. The rising‐time (tr) and falling‐time (tf) responses of the PNs cell are significantly improved, and around 36% improvement in the optical switching response is obtained. In addition, the dynamic gray‐level tr and tf responses of the PNs cell are enhanced by around 55% and 42%, respectively, at a low driving voltage (~12 V). This developed VA‐IPS LC/PNs cell benefits not only the LC molecular alignment but also the electro‐optical performance. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1123–1130  相似文献   

17.
Abstract

The long range molecular dynamical behaviour of liquid-crystalline side chain polymers with the mesogenic groups linked laterally to the backbone have been studied by using dielectric relaxation spectroscopy over a broad temperature and frequency range. The samples were oriented homeotropically and homogenously by electric and magnetic fields and the relaxations were recorded during alignment and with the fully aligned samples. By fitting the data to theoretical relaxation curves, accurate relaxation parameters could be determined, allowing us to perform a comparison with end-fixed liquid-crystalline side chain polymers on the one hand and with low molecular weight liquid crystals on the other. The relaxation in homeotropic alignment for the laterally fixed compound has more analogies in some aspects, for example, the relaxation time distribution, with low molecular weight liquid crystals than with the corresponding end-fixed compounds, though the activation energy is very large (241 kJ/mol). We relate this to the length of the rigid mesogenic unit and the resulting stronger repulsion by the neighbouring side chains during reorientation. In homogeneous alignment the relaxation is very broad and also has a large activation energy. Different molecular processes are related to this relaxation regime. The relationship between the different relaxation processes and the molecular structure is discussed.  相似文献   

18.
The synthesis and spectroscopic properties of a series of CF3‐labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide‐substituted ligands based on 1,4,7,10‐tetraazacyclododecane are described. The theoretical contributions of the 19F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the LnIII ion and the fluorine nucleus, the applied magnetic field, and the re‐rotational correlation time of the complex, for a given LnIII ion. Selected complexes exhibit pH‐dependent chemical shift behaviour, and a pKa of 7.0 was determined in one example based on the holmium complex of an ortho‐cyano DO3A‐monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two 19F resonances. Relaxation analyses of variable‐temperature and variable‐field 19F, 17O and 1H NMR spectroscopy experiments are reported, aided by identification of salient low‐energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the LnIII ion and the CF3 reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in 19F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue.  相似文献   

19.
ABSTRACT

High sensitivity of liquid crystals to the electric field makes them highly demanded and widely used in different applications. Despite the large number of the electro-optical research on the low-molar-mass liquid crystals electro-optics of the liquid crystalline (LC) polymers is much less studied. Herein, the comparative electro-optical behaviour of two nematic comb-shaped polyacrylates with phenylbenzoate mesogenic side groups was studied in detail. These two polyacrylates have completely the same structure of polymer backbone and spacer length but different in the direction of the ester group in the phenylbenzoate fragments. It was found that this difference predetermines their completely opposite electro-optical properties.

The influence of the electric field of different strength and frequency on the orientation of the mesogenic groups of these polymers is studied. It is shown that application of the electric field at temperatures above the glass transition temperature (~25°C) induces reorientation of the mesogenic groups along or perpendicular to the electric field direction depending in its turn on the ester group direction. For one of the polyacrylates an unusual textural transition is found; during cooling of the polymer sample under applied field at definite temperature a sharp change in the mesogen’s orientation from homeotropic to planar one is found. This electro-optical phenomenon is observed for the first time and probably associated with sharp change in sign of anisotropy of dielectric permittivity from positive (at high temperatures) to negative one (at lower temperatures). Kinetics of the electro-optical switching at different temperatures, influence of the molar masses of the polymer and frequency of the applied AC field on electro-optical behaviour of the polymers are studied. The possibility of the fixation of the electroinduced homeotropic alignment of the mesogenic groups by photopolymerisation of the diacrylate dissolved in the polymer is demonstrated.  相似文献   

20.
Heteronuclear dipolar decoupling is an essential requirement for extracting structural information from the 13C NMR spectra of liquid crystals. Efficient schemes for heteronuclear dipolar decoupling in such systems are formulated here by supercycling SWf‐TPPM, a sequence introduced recently for this purpose in rotating solids. These sequences are compared with two other commonly used decoupling schemes in liquid‐crystal NMR, SPINAL‐64 and SWf‐TPPM, by analyzing the intensities of various resonances in the proton decoupled 13C spectrum of the liquid‐crystal 4‐n‐pentyl‐4′‐cyanobiphenyl (5CB). The effectiveness of the decoupling programs with respect to experimental parameters such as RF field strength, decoupler offset frequency and phase angle is also presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号