首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Liquid crystals》2000,27(9):1137-1146
We analyse the electrostatic properties of a set of cyano-containing mesogen molecules with different rigid cores and variable alkyl chain lengths, computing the molecular charge distributions. Using the simple prototype benzonitrile, we analyse the reliability of the quantum chemical methods used to estimate the electrostatic dipole moments of polar conjugated molecules. We show that the electronic properties of the long mesogenic molecules can be treated by combining HF geometry optimization procedures with single point MP2 calculations. We compare the results of these computations with the available experimental phase transition data of mesogens and discuss some examples of how the non-trivial mesomorphic behaviour, which is usually observed in these cyano compounds, can be qualitatively explained by the molecular electrostatic interaction potential.  相似文献   

2.
We use the term “counter-intuitive” to describe an intermolecular interaction in which the electrostatic potentials of the interacting regions of the ground-state molecules have the same sign, both positive or both negative. In the present work, we consider counter-intuitive halogen bonding with nitrogen bases, in which both the halogen σ-hole and the nitrogen lone pair have negative potentials on their molecular surfaces. We show that these interactions can be treated as Coulombic despite the apparent repulsion between the ground-state molecules, provided that both electrostatics and polarization are explicitly taken into account. We demonstrate first that the energies of 20 counter-intuitive interactions with four nitrogen bases can be expressed very well in terms of just two molecular properties: the electrostatic potential of the halogen σ-hole and the average polarizability of the nitrogen base. Then we show that the same two properties can also represent the energies of an expanded data base that includes the 20 counter-intuitive plus an additional 20 weak and moderately-strong intuitive halogen bonding interactions (in which the σ-hole potentials are now positive).  相似文献   

3.
A new method for the characterization of molecules based on the model approach of molecular surfaces is presented. We use the topographical properties of the surface as well as the electrostatic potential, the local lipophilicity/hydrophilicity, and the hydrogen bond density on the surface for characterization. The definition and the calculation method for these properties are reviewed shortly. The surface is segmented into overlapping patches with similar molecular properties. These patches can be used to represent the characteristic local features of the molecule in a way that is beyond the atomistic resolution but can nevertheless be applied for the analysis of partial similarities of different molecules as well as for the identification of molecular complementarity in a very general sense. The patch representation can be used for different applications, which will be demonstrated in subsequent articles.  相似文献   

4.
《Liquid crystals》1998,24(5):657-671
We present the results of molecular dynamics simulation studies of 4-(trans-4'-pentylcyclohexyl)- benzonitrile (PCH5) at different temperatures in the isotropic and nematic phases within the united atom approach. Special attention is paid to the electrostatic interactions. Different methods of determining point charges are compared and the effect of the electrostatic interactions on the molecular distribution is considered. Their decisive influence on local molecular packing and phase transition temperature is shown. We analyse various static and dynamic properties, being specially interested in the reliability of the simulation results, to check to which extent they are distorted by the confinements adopted during the simulations (and especially the size of the system). Using realistic molecular interaction models in contrast to simple model ellipsoids, we find that the number of molecules and the lengths of the simulation runs have to be increased considerably when studying macroscopic properties like the phase transition temperature and the order parameter. Much easier to access are single particle and local properties such as translational dynamics and local ordering, but also the relative dependence of the order parameters of various ranks.  相似文献   

5.
6.
Summary It is shown how a self-organizing neural network such as the one introduced by Kohonen can be used to analyze features of molecular surfaces, such as shape and the molecular electrostatic potential. On the one hand, two-dimensional maps of molecular surface properties can be generated and used for the comparison of a set of molecules. On the other hand, the surface geometry of one molecule can be stored in a network and this network can be used as a template for the analysis of the shape of various other molecules. The application of these techniques to a series of steroids exhibiting a range of binding activities to the corticosteroid-binding globulin receptor allows one to pinpoint the essential features necessary for biological activity.  相似文献   

7.
We present results of molecular dynamics simulations of fully hydrated DMPC bilayers performed on graphics processing units (GPUs) using current state-of-the-art non-polarizable force fields and a local GPU-enabled molecular dynamics code named FEN ZI. We treat the conditionally convergent electrostatic interaction energy exactly using the particle mesh Ewald method (PME) for solution of Poisson's Equation for the electrostatic potential under periodic boundary conditions. We discuss elements of our implementation of the PME algorithm on GPUs as well as pertinent performance issues. We proceed to show results of simulations of extended lipid bilayer systems using our program, FEN ZI. We performed simulations of DMPC bilayer systems consisting of 17,004, 68,484, and 273,936 atoms in explicit solvent. We present bilayer structural properties (atomic number densities, electron density profiles), deuterium order parameters (S(CD)), electrostatic properties (dipole potential, water dipole moments), and orientational properties of water. Predicted properties demonstrate excellent agreement with experiment and previous all-atom molecular dynamics simulations. We observe no statistically significant differences in calculated structural or electrostatic properties for different system sizes, suggesting the small bilayer simulations (less than 100 lipid molecules) provide equivalent representation of structural and electrostatic properties associated with significantly larger systems (over 1000 lipid molecules). We stress that the three system size representations will have differences in other properties such as surface capillary wave dynamics or surface tension related effects that are not probed in the current study. The latter properties are inherently dependent on system size. This contribution suggests the suitability of applying emerging GPU technologies to studies of an important class of biological environments, that of lipid bilayers and their associated integral membrane proteins. We envision that this technology will push the boundaries of fully atomic-resolution modeling of these biological systems, thus enabling unprecedented exploration of meso-scale phenomena (mechanisms, kinetics, energetics) with atomic detail at commodity hardware prices.  相似文献   

8.
9.
We apply completely transferable, strictly localized molecular orbitals for the calculation of molecular electrostatic fields. This approach, derived from our previous bond fragment method for the calculation of molecular electrostatic potentials, reduces computational efforts drastically. The fields around small molecules containing first- and second-row atoms are systematically overestimated as compared with ab initio calculations with a minimal STO -3G basis set. However, deviations can be corrected by a simple multiplicative factor, which means that the overall shape of the potential and field around the molecule is correctly reproduced. Our approximate field can be used to determine possible hydration sites around molecules as proposed earlier by Peinel and coworkers. Application of the method is illustrated on the formamide molecule.  相似文献   

10.
Structural and theoretical analyses of proteins are central to the understanding of complex molecular mechanisms and are fundamental to the drug discovery process. Computational techniques yield useful insights into an ever-wider range of biomolecular systems. Protein three-dimensional structures and molecular functions can be predicted in some circumstances, while experimental structures can be analyzed in depth via such computational approaches. Non-covalent binding of biomolecules can be understood by considering structural, thermodynamic and kinetic issues, and theoretical simulations of such events can be attempted. The central role of electrostatic interactions with regard to protein function, structure and stability has been investigated and some electrostatic properties can be modeled theoretically. Computer methods thus help to prioritize, design, analyze and rationalize biochemical experiments. Cardiovascular diseases and associated blood coagulation disorders are leading causes of death worldwide. Blood coagulation involves more than 30 proteins that interact specifically with various degrees of affinity. Many of these molecules can also bind transiently to phospholipid surfaces. Numerous point mutations in the genes of coagulation proteins and regulators have been identified. Understanding the coagulation cascade, its regulation and the impact of mutations is required for the development of new therapies and diagnostic tools. In this review, we describe concepts and methods pertaining to the field of structural bioinformatics. We provide examples of applications of these approaches to blood coagulation proteins and show that such studies can give insights about molecular mechanisms contributing to cardiovascular disease susceptibility.  相似文献   

11.
12.
Recent experimental and theoretical analyses indicate that water molecules between or near redox partners can significantly affect their electron-transfer (ET) properties. Here, we study the effects of intervening water molecules on the electron self-exchange reaction of azurin (Az) by using a newly developed ab-initio method to calculate transfer integrals between molecular sites. We show that the insertion of water molecules in the gap between the copper active sites of Az dimers slows down the exponential decay of the ET rates with the copper-to-copper distance. Depending on the distance between the redox sites, water can enhance or suppress the electron-transfer kinetics. We show that this behavior can be ascribed to the simultaneous action of two competing effects: the electrostatic interaction of water with the protein subsystem and its ability to mediate ET coupling pathways.  相似文献   

13.
Tri‐isopropylsilylethynyl (TIPS)‐functionalized polycyclic aromatic hydrocarbon (PAH) molecules incorporate structural components of graphene nanoribbons and represent a family of model molecules that form organic crystal semiconductors for electronic devices. Here, we report a series of TIPS‐functionalized PAHs and discuss their electronic properties and crystal packing features. We observe that these soluble compounds easily form one‐dimensional (1 D) packing arrangements and allow a direct evolution of the π stacking by varying the geometric shape. We find that the aspect ratio between length and width plays an important role on crystal packing. Our result indicates that when the PAH molecules have zigzag edges, these can provide enough volume for the molecules to rotate and reorient, alleviating the unfavorable electrostatic interactions found in perfectly cofacial π–π stacking. Density functional theory calculations were carried out to provide insights into how the molecular geometric shape influences the electronic structure and transport properties. The calculations indicate that, among the compounds studied here, “brick‐layer” stacks provide the highest hole mobility.  相似文献   

14.
The electronic and structural properties of retinal and four analogs were studied using semiempirical, ab initio Hartree-Fock, and density functional theory methods with the aim to evaluate the effects caused by some structural modifications in the ring bound to the polyenic chain and compared with the all-E-trans-retinal molecule. Therefore, some properties such as bond lengths, bond angles, atomic charges derived from electrostatic potential charges from electrostatic potential using grid based method as well as frontier orbitals of the polyenic chain were analyzed. Furthermore, the transition energies of the molecules were also calculated using the Zerner's intermediate neglect of differential overlap-spectroscopic, time-dependent Hartree-Fock, and time-dependent density functional theory methods. The results indicate that in spite of the structural modifications of retinal derivatives in comparison with all-E-trans-retinal, their properties seem similar. Thus, these molecules may behave similarly to all-E-trans-retinal and possibly be attempted in the search of novel molecular devices.  相似文献   

15.
The sulfur mustard, HD, a chemical warfare agent, has been studied by ab initio quantum molecular computations (HF /6-31G * and 6-31G ) on its various forms (neutral, ethylene sulfonium, and free carbonium ions). The geometries of these molecules have been completely optimized and the minimal energy conformations determined with their associated charge distributions. We discuss these results on electrostatic properties with respect to the mechanism of DNA alkylation by HD and compare them with our previous study of the nitrogen mustard mechlorethamine.  相似文献   

16.
17.
Summary The design of molecules to fit into the active site of receptors is a rapidly developing area of pharmacology and medicinal chemistry. A good ligand needs a suitable geometry and also appropriate electrostatic properties. The electrostatic properties of the ligand should complement those of the receptor. We present a method for the assignment of atom-centred point charges for a ligand, based on the electrostatic potential of the receptor. These point charges are chosen to give the best possible complementarity to the receptor electrostatic potential over the van der Waals surface of the ligand. We demonstrate that point charges can be chosen to give good electrostatic complementarity, and suggest that a molecule with similar electrostatic properties should bind well to the receptor.  相似文献   

18.
A method is presented to calculate the electron-electron and nuclear-electron intermolecular Coulomb interaction energy between two molecules by separately fitting the unperturbed molecular electron density of each monomer. This method is based on the variational Coulomb fitting method which relies on the expansion of the ab initio molecular electron density in site-centered auxiliary basis sets. By expanding the electron density of each monomer in this way the integral expressions for the intermolecular electrostatic calculations are simplified, lowering the operation count as well as the memory usage. Furthermore, this method allows the calculation of intermolecular Coulomb interactions with any level of theory from which a one-electron density matrix can be obtained. Our implementation is initially tested by calculating molecular properties with the density fitting method using three different auxiliary basis sets and comparing them to results obtained from ab initio calculations. These properties include dipoles for a series of molecules, as well as the molecular electrostatic potential and electric field for water. Subsequently, the intermolecular electrostatic energy is tested by calculating ten stationary points on the water dimer potential-energy surface. Results are presented for electron densities obtained at four different levels of theory using two different basis sets, fitted with three auxiliary basis sets. Additionally, a one-dimensional electrostatic energy surface scan is performed for four different systems (H2O dimer, Mg2+-H2O, Cu+-H2O, and n-methyl-formamide dimer). Our results show a very good agreement with ab initio calculations for all properties as well as interaction energies.  相似文献   

19.
Experimental and theoretical studies of electron densities and the corresponding derived entities such as electrostatic potentials have been the primary means of understanding the chemical nature and electronic properties of crystalline substances. Conventional crystal calculation methods such as the embedded cluster models are capable of performing calculations on small and medium-sized molecules, while periodic ab initio methods can treat crystals with up to 200 atoms per unit cell. A linear scaling method, viz. the molecular tailoring approach, has recently been developed for obtaining ab initio quality one-electron properties. In the present study, the molecular tailoring approach is employed to generate electron density, electrostatic potential and interaction density maps with the ibuprofen crystal as a test case. The interaction density and electrostatic potential maps produced in the present work succinctly bring out the actual crystalline environment around a given reference molecule by including the interactions with atoms in its neighborhood. The results obtained from the molecular tailoring approach may thus be expected to enhance our understanding of the environment in the crystalline material with reasonably small computational effort.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

20.
The existence of areas of strongly positive electrostatic potential in the central regions of the molecular surface of high-energy molecules is a strong indicator that these compounds are very sensitive towards detonation. Development of high-energy compounds with reduced sensitivity towards detonation and high efficiency is hard to achieve since the energetic molecules with high performance are usually very sensitive. Here we used Density Functional Theory (DFT) calculations to study a series of bis(acetylacetonato) and nitro-bis(acetylacetonato) complexes and to elucidate their potential application as energy compounds with moderate sensitivities. We calculated electrostatic potential maps for these molecules and analyzed values of positive potential in the central portions of molecular surfaces in the context of their sensitivity towards detonation. Results of the analysis of the electrostatic potential demonstrated that nitro-bis(acetylacetonato) complexes of Cu and Zn have similar values of electrostatic potential in the central regions (25.25 and 25.06 kcal/mol, respectively) as conventional explosives like TNT (23.76 kcal/mol). Results of analysis of electrostatic potentials and bond dissociation energies for the C-NO2 bond indicate that nitro-bis(acetylacetonato) complexes could be used as potential energetic compounds with satisfactory sensitivity and performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号