首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The present work reports the synthesis, characterization and performance of a new zinc(II) complex of [Zn(C3H7-bim)2Br2] (bim = benzimidazole) as electrocatalyst for trichloroacetic acid and bromate reduction. Its structure was characterized by X-ray crystallography, IR spectroscopy and elemental analysis. The zinc atom adopts a distorted tetrahedral geometry by coordinating to two bromine atoms and two nitrogen atoms from two 1-propyl-1H-benzo[d]imidazole ligands. The electrochemical behavior and electrocatalysis of the zinc complex bulk-modified carbon paste electrode (Zn-CPE) have been studied by cyclic voltammetry. The Zn-CPE shows good electrocatalytic activities toward the reduction of trichloroacetic acid and bromate. The detection limit and the sensitivity are 0.05 μM, 67.43 μA μM−1 for trichloroacetic acid detection, and 0.02 μM, 69.94 μA μM−1 for bromate detection, respectively. This modified electrode shows good reproducibility, high stability, low detection limit, technical simplicity and possibility of rapid preparation, which is important for practical applications.   相似文献   

2.
The kinetics of the interaction of glycine-l-leucine (Glyleu) with cis-[Pt(cis-dach)(OH2)2]2+ (dach = 1,2-diaminocyclohexane) has been studied spectrophotometrically as a function of [cis-[Pt(cis-dach)(OH2)2]2+], [Glyleu] and temperature at pH 4.0, where the complex exists predominantly as the diaqua species and Glyleu as a zwitterion. The substitution reaction shows two consecutive steps: the first is the ligand-assisted anation and the second is the chelation step. The activation parameters for both the steps were evaluated using Eyring’s equation. The low ∆H1 (51.9 ± 2.8 kJmol−1) and large negative value of ∆S1 (−152 ± 8 JK−1mol−1) as well as ∆H2 (54.4 ± 1.7 kJmol−1) and ∆S2 (−162 ± 5 JK−1mol−1) indicate an associative mode of activation for both the aqua ligand substitution processes.  相似文献   

3.
Ion-selective electrodes are proposed on the basis of tetradecylammonium salts for determining [B12H12]2−, [B10H10]2−, and [B10Cl10]2− closoborate anions. Their basic electroanalytical parameters, selectivity, linear response range, detection limit, potential stability, and the pH effect on electrode indications are estimated. The closoborate anions can be arranged in the following series by the selectivity of their determination: [B10Cl10]2− ≫ [B12H12]2− > [B10H10]2−.  相似文献   

4.
A conjugate of the bacteriochlorophyll a derivative with the cobalt bis(dicarbollide) anion [3,3′-Co(1,2-C2B9H11)2] was synthesized.  相似文献   

5.
A gene encoding chitin deacetylase was cloned by polymerase chain reaction from Aspergillus nidulans. Sequencing result showed 40% homology to the corresponding gene from Colletotrichum lindemuthianum. The complete gene contains an open reading frame of 747 nucleotides encoding a sequence of 249 amino acid residues. The chitin deacetylase gene was subcloned into a pET28a expression vector and expressed in Escherichia coli BL21 and then purified by metal affinity chromatography using a His-bind column. The purified chitin deacetylase demonstrated an activity of 0.77 U ml−1 for the glycol chitin substrates, and its specific activity was 4.17 U mg−1 for it. The optimal temperature and pH of the purified enzyme were 50 °C and 8.0, respectively. When glycol chitin was used as the substrate, K m was 4.92 mg ml−1, and K cat showed 6.25 s−1, thus the ratio of K cat and K m was 1.27 ml s−1 mg−1. The activity of chitin deacetylase was affected by a range of metal ions and ethylenediaminetetraacetic acid.  相似文献   

6.
A 66-kDa thermostable family 1 Glycosyl Hydrolase (GH1) enzyme with β-glucosidase and β-galactosidase activities was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family. N-terminal and partial internal amino acid sequences showed significant resemblance to plant GH1 enzymes. Kinetic studies showed that enzyme hydrolyzed p-nitrophenyl β-d-glucopyranoside (pNP-Glc) with higher efficiency (K cat/K m = 2.27 × 104 M−1 s−1) as compared to p-nitrophenyl β-d-galactopyranoside (pNP-Gal; K cat/K m = 1.15 × 104 M−1 s−1). The optimum pH for β-galactosidase activity was 4.8 and 4.4 in citrate phosphate and acetate buffers respectively, while for β-glucosidase it was 4.6 in both buffers. The activation energy was found to be 10.6 kcal/mol in the temperature range 30–65 °C. The enzyme showed maximum activity at 65 °C with half life of ~40 min and first-order rate constant of 0.0172 min−1. Far-UV CD spectra of enzyme exhibited α, β pattern at room temperature at pH 8.0. This thermostable enzyme with dual specificity and higher catalytic efficiency can be utilized for different commercial applications.  相似文献   

7.
In the present study, compactin production by Penicillium brevicompactum WA 2315 was optimized using solid-state fermentation. The initial one factor at a time approach resulted in improved compactin production of 905 μg gds−1 compared to initial 450 μg gds−1. Subsequently, nutritional, physiological, and biological parameters were screened using fractional factorial and Box–Behnken design. The fractional factorial design studied inoculum age, inoculum volume, pH, NaCl, NH4NO3, MgSO4, and KH2PO4. All parameters were found to be significant except pH and KH2PO4. The Box–Behnken design studied inoculum volume, inoculum age, glycerol, and NH4NO3 at three different levels. Inoculum volume (p = 0.0013) and glycerol (p = 0.0001) were significant factors with greater effect on response. The interaction effects were not significant. The validation study using model-defined conditions resulted in an improved yield of 1,250 μg gds−1 compactin. Further improvement in yield was obtained using fed batch mode of carbon supplementation. The feeding of glycerol (20% v/v) on day 3 resulted in further improved compactin yield of 1,406 μg gds−1. The present study demonstrates that agro-industrial residues can be successfully used for compactin production, and statistical experiment designs provide an easy tool to improve the process conditions for secondary metabolite production.  相似文献   

8.
This paper reports silica gel loaded with p-tert-butylcalix[8]arene as a new solid phase extractor for determination of trace level of uranium. Effective extraction conditions were optimized in column methods prior to determination by spectrophotometry using arsenazo(III). The results showed that U(VI) ions can be sorbed at pH 6 in a mini-column and quantitative recovery of U(VI) (>95–98%) was achieved by stripping 0.4 mol L−1 HCl. The sorption capacity of the functionalized sorbent is 0.072 mmol uranium(VI) g−1 modified silica gel. The relative standard deviation and detection limit were 1.2% (n = 10) for 1 μg uranium(VI) mL−1 solution and 0.038 μg L−1, respectively. The method was employed to the preconcentration of U(VI) ions from spiked ground water samples.  相似文献   

9.
A ternary binuclear complex of dysprosium chloride hexahydrate with m-nitrobenzoic acid and 1,10-phenanthroline, [Dy(m-NBA)3phen]2·4H2O (m-NBA: m-nitrobenzoate; phen: 1,10-phenanthroline) was synthesized. The dissolution enthalpies of [2phen·H2O(s)], [6m-HNBA(s)], [2DyCl3·6H2O(s)], and [Dy(m-NBA)3phen]2·4H2O(s) in the calorimetric solvent (VDMSO:VMeOH = 3:2) were determined by the solution–reaction isoperibol calorimeter at 298.15 K to be \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [2phen·H2O(s), 298.15 K] = 21.7367 ± 0.3150 kJ·mol−1, \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [6m-HNBA(s), 298.15 K] = 15.3635 ± 0.2235 kJ·mol−1, \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [2DyCl3·6H2O(s), 298.15 K] = −203.5331 ± 0.2200 kJ·mol−1, and \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = 53.5965 ± 0.2367 kJ·mol−1, respectively. The enthalpy change of the reaction was determined to be \Updelta\textr H\textmq = 3 6 9. 4 9 ±0. 5 6   \textkJ·\textmol - 1 . \Updelta_{\text{r}} H_{\text{m}}^{\theta } = 3 6 9. 4 9 \pm 0. 5 6 \;{\text{kJ}}\cdot {\text{mol}}^{ - 1} . According to the above results and the relevant data in the literature, through Hess’ law, the standard molar enthalpy of formation of [Dy(m-NBA)3phen]2·4H2O(s) was estimated to be \Updelta\textf H\textmq \Updelta_{\text{f}} H_{\text{m}}^{\theta } [[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = −5525 ± 6 kJ·mol−1.  相似文献   

10.
Corynebacterium crenatum SYPA 5-5 is an aerobic and industrial l-arginine producer. It was proved that the Corynebacterium glutamicum/Escherichia coli shuttle vector pJC1 could be extended in C. crenatum efficiently when using the chloramphenicol acetyltransferase gene (cat) as a reporter under the control of promoter tac. The expression system was applied to over-express the gene vgb coding Vitreoscilla hemoglobin (VHb) to further increase the dissolved oxygen in C. crenatum. As a result, the recombinant C. crenatum containing the pJC-tac-vgb plasmid expressed VHb at a level of 3.4 nmol g−1, and the oxygen uptake rates reached 0.25 mg A562−1 h−1 which enhanced 38.8% compared to the wild-type strain. Thus, the final l-arginine concentration of the batch fermentation reached a high level of 35.9 g L−1, and the biomass was largely increased to 6.45 g L−1, which were 17.3% and 10.5% higher than those obtained by the wild-type strain, respectively. To our knowledge, this is the first report that the efficient expression system was constructed to introduce vgb gene increasing the oxygen and energy supply for l-arginine production in C. crenatum, which supplies a good strategy for the improvement of amino acid products.  相似文献   

11.
Glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of d-glucose at carbon 2 in the presence of molecular O2 producing d-glucosone (2-keto-glucose and d-arabino-2-hexosulose) and H2O2. It was used to convert d-glucose into d-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of d-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H2O2 acted as inhibitor for this reaction. The rate of bioconversion of d-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO2 at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55°C) and pH (5.0) of d-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E a) was 32.08 kJ mol−1 and kinetic parameters (V max, K m, K cat and K cat/K m) for this bioconversion were 8.8 U mg−1 protein, 2.95 mM, 30.81 s−1 and 10,444.06 s−1 M−1, respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of d-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.  相似文献   

12.
An N-tert-butyloxycarbonylated organic synthesis intermediate, (S)-tert-butyl 1-phenylethylcarbamate, was prepared and investigated by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). The molar heat capacities of (S)-tert-butyl 1-phenylethylcarbamate were precisely determined by means of adiabatic calorimetry over the temperature range of 80-380 K. There was a solid–liquid phase transition exhibited during the heating process with the melting point of 359.53 K. The molar enthalpy and entropy of this transition were determined to be 29.73 kJ mol−1 and 82.68 J K−1 mol−1 based on the experimental C pT curve, respectively. The thermodynamic functions, [HT0 - H298.150 H_{T}^{0} - H_{298.15}^{0} ] and [ST0 - S298.150 S_{T}^{0} - S_{298.15}^{0} ], were calculated from the heat capacity data in the temperature range of 80–380 K with an interval of 5 K. TG experiment showed that the pyrolysis of the compound was started at the temperature of 385 K and terminated at 510 K within one step.  相似文献   

13.
Using a LKB-2277 bioactivity monitor, stop-flow mode, the power–time curves of Candida albicans growth at 37 °C affected by berberine were measured. The check experiments were studied based on agar cup method to observe the inhibitory diameter and serial dilution method to determine the minimal inhibitory concentration (MIC) of berberine on C. albicans growth. By analyzing the quantitative thermogenic parameters taken from the power–time curves using correspondence analysis (CA), we could find that berberine at a low concentration (5.0 μg mL−1) began to inhibit the growth of C. albicans and at a high concentration (75.0 μg mL−1) completely inhibited C. albicans growth. The anti-fungal activity of berberine could also be expressed as half-inhibitory concentration IC50, i.e., 50% effective in this inhibition. The value of IC50 of berberine on C. albicans was 34.52 μg mL−1. The inhibitory diameters all exceeded 10 mm in test range and the MIC was 500 μg mL−1. Berberine had strong anti-fungal effect on C. albicans growth. This work provided an important idea of the combination of microcalorimetry and CA for the study on anti-fungal effect of berberine and other compounds. Compared with the agar cup method and serial dilution method, microcalorimetry not only offered a useful way for evaluating the bioactivity of drugs, but also provides more information about the microbial growth and all this information was significant for the synthesis and searching of antibiotics.  相似文献   

14.
Monomeric extracellular endoglucanase (25 kDa) of transgenic koji (Aspergillus oryzae cmc-1) produced under submerged growth condition (7.5 U mg−1 protein) was purified to homogeneity level by ammonium sulfate precipitation and various column chromatography on fast protein liquid chromatography system. Activation energy for carboxymethylcellulose (CMC) hydrolysis was 3.32 kJ mol−1 at optimum temperature (55 °C), and its temperature quotient (Q 10) was 1.0. The enzyme was stable over a pH range of 4.1–5.3 and gave maximum activity at pH 4.4. V max for CMC hydrolysis was 854 U mg−1 protein and K m was 20 mg CMC ml−1. The turnover (k cat) was 356 s−1. The pK a1 and pK a2 of ionisable groups of active site controlling V max were 3.9 and 6.25, respectively. Thermodynamic parameters for CMC hydrolysis were as follows: ΔH* = 0.59 kJ mol−1, ΔG* = 64.57 kJ mol−1 and ΔS* = −195.05 J mol−1 K−1, respectively. Activation energy for irreversible inactivation ‘E a(d)’ of the endoglucanase was 378 kJ mol−1, whereas enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) of activation at 44 °C were 375.36 kJ mol−1, 111.36 kJ mol−1 and 833.06 J mol−1 K−1, respectively.  相似文献   

15.
Scenedesmus spp. have been reported as potential microalgal species used for the lipid production. This study investigated the effects of light intensity (at three levels: 50, 250, and 400 μmol photons m−2 s−1) on the growth and lipid production of Scenedesmus sp. 11-1 under N-limited condition. Carotenoid to chlorophyll ratio was higher when algae 11-1 grew under 250 and 400 μmol photons m−2 s−1 than that under 50 μmol photons m−2 s−1, while protein contents was lower. Highest biomass yield (3.88 g L−1), lipid content (41.1 %), and neutral lipid content (32.9 %) were achieved when algae 11-1 grew at 400 μmol photons m−2 s−1. Lipid production was slight lower at 250 μmol photons m−2 s−1 level compared to 400 μmol photons m−2 s−1. The major fatty acids in the neutral lipid of 11-1 were oleic acid (43–52 %), palmitic acid (24–27 %), and linoleic acid (7–11 %). In addition, polyunsaturated fatty acids had a positive correlation with total lipid production, and monounsaturated fatty acids had a negative one.  相似文献   

16.
The oxidation of N,N-dimethylhydroxylamine (DMHAN) by nitrous acid is investigated in perchloric acid and nitric acid medium, respectively. The effects of H+, DMHAN, ionic strength and temperature on the reaction are studied. The rate equation in perchloric acid medium has been determined to be −d[HNO2]/dt = k[DMHAN][HNO2], where k = 12.8 ± 1.0 (mol/L)−1 min−1 when the temperature is 18.5 °C and the ionic strength is 0.73 mol/L with an activation energy about 41.5 kJ mol−1. The reaction becomes complicated when it is performed in nitric acid medium. When the molarity of HNO3 is higher than 1.0 mol/L, nitrous acid will be produced via the reaction between nitric acid and DMHAN. The reaction products are analyzed and the reaction mechanism is discussed in this paper.  相似文献   

17.
In this study, the microcalorimetric method was applied to investigate the activity of berberine on Shigella dysenteriae (S. dysenteriae). Heat flow power (HFP)–time curves of the growth metabolism of S. dysenteriae affected by berberine were determined using the thermal activity monitor (TAM) air isothermal microcalorimeter, ampoule mode, at 37 °C. By analyzing these curves and some quantitative parameters using multivariate analytical methods, similarity analysis (SA) and principal component analysis (PCA), the antibacterial activity of berberine on S. dysenteriae could be accurately evaluated from the change of the two main parameters, the maximum heat flow power P m2 and total heat output Q t: berberine at low concentration (25 μg mL−1) began to inhibit the growth of S. dysenteriae, high concentrations (50–200 μg mL−1) of berberine had strong antibacterial activity on S. dysenteriae, when the concentration of berberine was higher (250–300 μg mL−1), this antibacterial activity was stronger. All these illustrated that the antibacterial activity of berberine on S. dysenteriae was enhanced with the increase of the concentration of this compound. Berberine can be used as potential novel antibacterial agent for treating multidrug-resistant Shigella. This work provided a useful idea of the combination of microcalorimetry and multivariate analysis for studying the activity of other compounds or drugs on organisms.  相似文献   

18.
1,3,5,7-Tetramethyl-8-(N-hydroxysuccinimidyl butyric ester)difluoroboradiaza-s-indacene (TMBB-Su), a new BODIPY-based fluorescent probe, was designed and synthesized for the labeling of amino compounds. It was used as a pre-column derivatizing reagent for determination of amino acid neurotransmitters by high-performance liquid chromatography (HPLC). The fluorescence quantum yield in acetonitrile increased from 0.84 to 0.95 when it reacted with amino acid neurotransmitters. Derivatization of TMBB-Su with seven amino acid neurotransmitters was completed within 30 min at 25 °C in 24.0 mmol L−1 pH 7.8 boric acid buffer. The separation was performed on a C18 column with methanol–water–buffer 55:35:10 (v/v) as mobile phase (buffer: 0.10 mol L−1 H3Cit–0.10 mol L−1 NaOH). Interference from the other concomitant amino acids was eliminated successfully by means of pH gradient elution. With fluorescence detection at 494 and 504 nm for excitation and emission, respectively, the limits of detection (signal-to-noise ratio = 3) were from 2.1 to 12.0 nmol L−1. The proposed method has been used to determine amino acid neurotransmitters in the cerebral cortex of mice with cerebral ischemia at the convalescence stage with satisfactory recoveries varying from 94.9 to 105.2%.  相似文献   

19.
20.
A xylanase-encoding gene, xyn11F63, was isolated from Penicillium sp. F63 CGMCC1669 using degenerated polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR techniques. The full-length chromosomal gene consists of 724 bp, including a 73-bp intron, and encodes a 217 amino acid polypeptide. The deduced amino acid sequence of xyn11F63 shows the highest identity of 70% to the xylanase from Penicillium sp. strain 40, which belongs to glycosyl hydrolases family 11. The gene was overexpressed in Pichia pastoris, and its activity in the culture medium reached 516 U ml−1. After purification to electrophoretic homogeneity, the enzyme showed maximal activity at pH 4.5 and 40°C, was stable at acidic buffers of pH 4.5–9.0, and was resistant to proteases (proteinase K, trypsin, subtilisin A, and α-chymotrypsin). The specific activity, K m, and V max for oat spelt xylan substrate was 7,988 U mg−1, 22.2 mg ml−1, and 15,105.7 μmol min−1 mg−1, respectively. These properties make XYN11F63 a potential economical candidate for use in feed and food industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号