首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two series of 4‐ and 5‐tetrathiafulvalenyl‐1,2,3‐triazoles, as multifunctional ligands and precursors for molecular materials, have been synthesized by copper‐ or ruthenium‐based “click” chemistry. The solid‐state structures of three ligands and two CuII complexes were determined. Large differences in the electron‐donating properties between the 1,4‐ and 1,5‐isomers were evidenced by cyclic voltammetry. Theoretical calculations support this observation and allow the assignment of the electronic transitions observed in UV/Vis spectra of the ligands.  相似文献   

2.
Azoimidazolium dyes were used as precursors for mesoionic carbene ligands (Azo‐MICs). The properties of these ligands were examined by synthesizing RhI, AuI, and PdII complexes. Experimental (NMR, IR) and theoretical investigations show that Azo‐MICs are potent σ‐donor ligands. Yet, they feature a small singlet–triplet gap and very low‐lying LUMO levels. The unique electronic properties of Azo‐MICs allow for reversible one‐electron reductions of the metal complexes, as evidenced by cyclic voltammetry.  相似文献   

3.
Self‐assembled metallosupramolecular architectures (MSAs) with built‐in functionalities such as light‐harvesting metal centers are a promising approach for developing emergent properties within discrete molecular systems. Herein we describe the synthesis of two new but simple “click” ligands featuring a bidentate 2‐pyridyl‐1,2,3‐triazole chelate pocket linked to a monodentate pyridyl (either 3‐ or 4‐substituted, L1 and L2 ) unit. The ligands and the corresponding four PdIIand PtIImetallo‐ligands ( Pd1 , Pd2 , Pt1 and Pt2 ) were synthesized and characterized using nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI‐MS), and X‐ray crystallography. Solid‐state characterization of the series of ligands and metallo‐ligands revealed that these compounds display a co‐planar conformation of all the aryl units. The PtIIcontaining metallo‐ligands ( Pt1 and Pt2 ) were found to assemble into square ( Sqr ) and triangular ( Tri ) shaped architectures when combined with neutral PdCl2 linker units. Additionally, the ability of the PtIImetallo‐ligands and Tri to photocatalyze the cycloaddition of singlet oxygen to anthracene was investigated.  相似文献   

4.
The synthesis of a variety of 2‐(1H‐1,2,3‐triazol‐4‐yl)‐pyridines by click chemistry is demonstrated to provide straightforward access to mono‐functionalized ligands. The ring‐opening polymerization of ε‐caprolactone initiated by such a mono‐functionalized ligand highlights the synthetic potential of this class of bidentate ligands with respect to polymer chemistry or the attachment onto surfaces and nanoparticles. The coordination to RuII ions results in homoleptic and heteroleptic complexes with the resultant photophysical and electrochemical properties strongly dependent on the number of these ligands attached to the RuII core.  相似文献   

5.
A new family of 120° carbazole‐based dendritic donors D1 – D3 have been successfully designed and synthesized, from which a series of novel supramolecular carbazole‐based metallodendrimers with well‐defined shapes and sizes were successfully prepared by [2+2] and [3+3] coordination‐driven self‐assembly. The structures of newly designed rhomboidal and hexagonal metallodendrimers were characterized by multinuclear NMR (1H and 31P) spectroscopy, ESI‐TOF mass spectrometry, FTIR spectroscopy, and the PM6 semiempirical molecular orbital method. The fluorescence emission behavior of ligands D1 – D3 , rhomboidal metallodendrimers R1 – R3 , and hexagonal metallodendrimers H1 – H3 in mixtures of dichloromethane and n‐hexane with different n‐hexane fractions were investigated. The results indicated that D1 – D3 featured typical aggregation‐induced emission (AIE) properties. However, different from ligands D1 – D3 , metallodendrimers R1 – R3 and H1 – H3 presented interesting generation‐dependent AIE properties. Furthermore, evidence for the aggregation of these metallodendrimers was confirmed by a detailed investigation of dynamic light‐scattering, Tyndall effect, and SEM. This research not only provides a highly efficient strategy for constructing carbazole‐based dendrimers with well‐defined shapes and sizes, but also presents a new family of carbazole‐based dendritic ligands and rhomboidal and hexagonal metallodendrimers with interesting AIE properties.  相似文献   

6.
Orthometalation at IrIII centers is usually facile, and such orthometalated complexes often display intriguing electronic and catalytic properties. By using a central phenyl ring as C?H activation sites, we present here mono‐ and dinuclear IrIII complexes with “click”‐derived 1,2,3‐triazole and 1,2,3‐triazol‐5‐ylidene ligands, in which the wingtip phenyl groups in the aforementioned ligands are additionally orthometalated and bind as carbanionic donors to the IrIII centers. Structural characterization of the complexes reveal a piano stool‐type of coordination around the metal centers with the “click”‐derived ligands bound either with C^N or C^C donor sets to the IrIII centers. Furthermore, whereas bond localization is observed within the 1,2,3‐triazole ligands, a more delocalized situation is found in their 1,2,3‐triazol‐5‐ylidene counterparts. All complexes were subjected to catalytic tests for the transfer hydrogenation of benzaldehyde and acetophenone. The dinuclear complexes turned out to be more active than their mononuclear counterparts. We present here the first examples of stable, isomer‐pure, dinuclear cyclometalated IrIII complexes with poly‐mesoionic‐carbene ligands.  相似文献   

7.
A series of luminescent cyclometalated platinum(II) complexes of N^C^N ligands [N^C^N=2,6‐bis(benzoxazol‐2′‐yl)benzene (bzoxb), 2,6‐bis(benzothiazol‐2′‐yl)benzene (bzthb), and 2,6‐bis(N‐alkylnaphthoimidazol‐2′‐yl)benzene (naphimb)] has been synthesized and characterized. Two of the platinum(II) complexes have been structurally characterized by X‐ray crystallography. Their electrochemical, electronic absorption, and luminescence properties have been investigated. In dichloromethane solution at room temperature, the cyclometalated N^C^N platinum(II) complexes exhibited rich luminescence with well‐resolved vibronic‐structured emission bands. The emission energies of the complexes are found to be closely related to the electronic properties of the N^C^N ligands. By varying the electronic properties of the cyclometalated ligands, a fine‐tuning of the emission energies can be achieved, as supported by computational studies. Multilayer organic light‐emitting devices have been prepared by utilizing two of these platinum(II) complexes as phosphorescent dopants, in which a saturated yellow emission with Commission International de I′Eclairage coordinates of (0.50, 0.49) was achieved.  相似文献   

8.
A rhodium‐catalyzed system is introduced for in situ modification of biaryl‐type monophosphines with hydrosilanes through a PIII‐chelation‐assisted dehydrogenative silylation reaction. A series of ligands containing silyl groups with different steric and electronic properties were obtained with excellent regioselectivities. This method offers many advantages, including the use of commercially available phosphines, no requirement for an external ligand or oxidant, a broader substrate scope, high efficiency, and access to a single regioisomer. Based on the outstanding properties of the parent scaffolds, the silyl‐substituted phosphines serve as excellent ligands in Pd‐catalyzed asymmetric Suzuki coupling reactions.  相似文献   

9.
A new class of Janus‐like ambiphilic ligands is introduced. The rigid diferrocene backbone in heterocycles 4‐SnP and 4‐BP creates an unprecedented chiral environment as demonstrated by multinuclear NMR and single‐crystal X‐ray studies. In addition, the ligands are redox‐responsive and the Lewis acidic borane moiety in 4‐BP can be exploited to further tune the properties: a clear decrease in the CO stretching frequency of a Vaska‐type RhI complex 5‐BP is observed upon addition of fluoride ions. Thus, the Lewis acid and Lewis base sites influence each other and their strength can be modulated by redox chemistry and anion binding.  相似文献   

10.
Phosphines have, in combination with transition metals, played a pivotal role in the rapid development of efficient catalytic processes. Caged phosphines constitute a class of three‐dimensional scaffolds providing unique control over steric and electronic properties. The versatility of the caged phosphine ligands has been demonstrated elegantly by the groups of Verkade, Gonzalvi as well as Stradiotto. Our research group has also been working extensively for the past several years in the development of 1,3,5‐triaza‐7‐phosphaadamantane‐based caged ligands and in this personal note we have summarized these applications pertaining to the modification of biologically useful nucleosides and heteroarenes.  相似文献   

11.
A new class of Janus‐like ambiphilic ligands is introduced. The rigid diferrocene backbone in heterocycles 4‐SnP and 4‐BP creates an unprecedented chiral environment as demonstrated by multinuclear NMR and single‐crystal X‐ray studies. In addition, the ligands are redox‐responsive and the Lewis acidic borane moiety in 4‐BP can be exploited to further tune the properties: a clear decrease in the CO stretching frequency of a Vaska‐type RhI complex 5‐BP is observed upon addition of fluoride ions. Thus, the Lewis acid and Lewis base sites influence each other and their strength can be modulated by redox chemistry and anion binding.  相似文献   

12.
A series of enantiomeric 2,6‐bis(1,2,3‐triazol‐4‐yl)pyridines (btp)‐containing ligands was synthesized by a one‐pot two‐step copper‐catalyzed amine/alkyne click reaction. The EuIII‐ and TbIII‐directed self‐assembly formation of these ligands was studied in CH3CN by monitoring their various photophysical properties, including their emerging circular dichroism and circularly polarized luminescence. The global analysis of the former enabled the determination of both the stoichiometry and the stability constants of the various chiral supramolecular species in solution.  相似文献   

13.
A series of pyridylbenzamidine ligands were applied in palladium‐catalyzed Suzuki–Miyaura reactions and the effect of ligand on catalytic properties was evaluated. Under the optimization conditions, the bulky and electron‐donating nitrogen donor ligands were successfully used to catalyze the reaction of a variety of aryl bromides and aryl chlorides with arylboronic acid, giving the desired products in moderate to high yields. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
2‐Iminoimidazolines — Strong Nitrogen Bases als Ligands in Inorganic Chemistry Due to the tendency of the 5‐membered cyclic fragment to accept a positive charge which yields an ylide type bonding situation, 2‐iminoimidazolines are strong nitrogen bases. They can serve as neutral ligands being 2+2 electron donors. Deprotonation leads to the anions which are potential 2+4 electron donors. We describe first the synthesis and characterization of the title compound 2‐imino‐1, 3‐dimethylimidazoline (ImNH, 8 ) and its anion 9 . Next we demonstrate their properties as ligands in complexes of main group elements and transition metals. In a third chapter we describe attempts to functionalize iminoimidazolines with the goal to create neutral ligands that coordinate in a semistable fashion. On this way we want to make a contribution to the chemistry of complex compounds directed towards catalysis.  相似文献   

15.
Luminescent metallo‐supramolecular polymers are a type of functional supramolecular architectures which integrates the advantages of emission, metal‐coordination, supramolecular chemistry as well as polymeric properties to realize advanced functions. Due to the abundant stimuli‐responsiveness of supramolecular assemblies and the light‐emitting properties, they have been widely applied as chemo‐sensors, light‐emitting devices, contrast agents for bio‐imaging, etc. In this review, we classify luminescent metallo‐supramolecular polymers based on the types of species (lanthanides, organometallic compounds, oligomer or polymer‐based ligands, small‐molecule‐based organic ligands) used to generate the luminescence and summarize recent developments of luminescent metallo‐supramolecular polymers. We mainly focus on the functions and applications of luminescent metallo‐supramolecular polymers and hope to give our reader a snapshot of research on luminescent metallo‐supramolecular polymers and encourage more scientists to devote into this promising area.  相似文献   

16.
The use of picolinic acid amide derivatives as an effective family of bidentate ligands for copper‐catalysed aryl ether synthesis is reported. A fluorine‐substituted ligand gave good results in the synthesis of a wide range of aryl ethers. Even bulky phenols, known to be very challenging substrates, were shown to react with aryl iodides with excellent yields using these ligands. At the end of the reaction, the first examples of end‐of‐life Cu species were isolated and identified as CuII complexes with several of the anionic ligands tested. A preliminary mechanistic investigation is reported that suggests that the substituents on the ligands might have a crucial role in determining the redox properties of the metal centre and, consequently, its efficacy in the coupling process. An understanding of these effects is important for the development of new efficient and tunable ligands for copper‐based chemistry.  相似文献   

17.
The syntheses, structures and properties of the complexes [CdBr2( L )2·4H2O]n [ L = 2,6‐dimethyl‐3,5‐dicyano‐4‐(4‐pyridyl)‐1,4‐dihydropyridine], 1 and [Cd(SCN)2( L )2(H2O)]n, 2 , are reported. In polymeric complexes 1 — 2 , the L ligands bridge the metal centers through the pyrimidyl and cyano nitrogen atoms forming 1‐D double‐stranded chain and zigzag chain, respectively. The L ligands in complex 1 act as κ1, κ1‐bidentate bridging ligand, whereas the L ligands in complex 2 act as κ1‐monodentae and κ1, κ1‐bidentate bridging ligand. The molecules of these complexes are interlinked through various weak interactions that form the packed structure. All the complexes exhibit emissions which may be tentatively assigned as intraligand (IL) π→π* transitions.  相似文献   

18.
We report star polymer metal–organic cage (polyMOC) materials whose structures, mechanical properties, functionalities, and dynamics can all be precisely tailored through a simple three‐component assembly strategy. The star polyMOC network is composed of tetra‐arm star polymers functionalized with ligands on the chain ends, small molecule ligands, and palladium ions; polyMOCs are formed via metal–ligand coordination and thermal annealing. The ratio of small molecule ligands to polymer‐bound ligands determines the connectivity of the MOC junctions and the network structure. The use of large M12L24 MOCs enables great flexibility in tuning this ratio, which provides access to a rich spectrum of material properties including tunable moduli and relaxation dynamics.  相似文献   

19.
One‐dimensional (1D) self‐assemblies of nanocrystals are of interest because of their vectorial and polymer‐like dynamic properties. Herein, we report a simple method to prepare elongated assemblies of semiconductor nanorods (NRs) through end‐to‐end self‐assembly. Short‐chained water‐soluble thiols were employed as surface ligands for CdSe NRs having a wurtzite crystal structure. The site‐specific capping of NRs with these ligands rendered the surface of the NRs amphiphilic. The amphiphilic CdSe NRs self‐assembled to form elongated wires by end‐to‐end attachment driven by the hydrophobic effect operating between uncapped NR ends. The end‐to‐end assembly technique was further applied to CdS NRs and CdSe tetrapods (TPs) with a wurtzite structure.  相似文献   

20.
We report star polymer metal–organic cage (polyMOC) materials whose structures, mechanical properties, functionalities, and dynamics can all be precisely tailored through a simple three‐component assembly strategy. The star polyMOC network is composed of tetra‐arm star polymers functionalized with ligands on the chain ends, small molecule ligands, and palladium ions; polyMOCs are formed via metal–ligand coordination and thermal annealing. The ratio of small molecule ligands to polymer‐bound ligands determines the connectivity of the MOC junctions and the network structure. The use of large M12L24 MOCs enables great flexibility in tuning this ratio, which provides access to a rich spectrum of material properties including tunable moduli and relaxation dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号