首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Antibiotic resistance has become a major challenge to public health worldwide. This crisis is further aggravated by the increasing emergence of bacterial resistance to carbapenems, typically considered as the antibiotics of last resort, which is mainly due to the production of carbapenem‐hydrolyzing carbapenemases in bacteria. Herein, the carbapenem‐based fluorogenic probe CB‐1 with an unprecedented enamine–BODIPY switch is developed for the detection of carbapenemase activity. This reagent is remarkably specific towards carbapenemases over other prevalent β‐lactamases. Furthermore, the efficient imaging of live clinically important carbapenemase‐producing organisms (CPOs) with CB‐1 demonstrates its potential for the rapid detection of antibiotic resistance and timely diagnosis of CPO infections.  相似文献   

2.
Bacterial resistance to antibiotics poses a great clinical challenge in fighting serious infectious diseases due to complicated resistant mechanisms and time‐consuming testing methods. Chemical reaction‐directed covalent labeling of resistance‐associated bacterial proteins in the context of a complicated environment offers great opportunity for the in‐depth understanding of the biological basis conferring drug resistance, and for the development of effective diagnostic approaches. In the present study, three fluorogenic reagents LRBL1–3 for resistant bacteria labeling have been designed and prepared on the basis of fluorescence resonance energy transfer (FRET). The hydrolyzed probes could act as reactive electrophiles to attach the enzyme, β‐lactamase, and thus facilitated the covalent labeling of drug resistant bacterial strains. SDS electrophoresis and MALDI‐TOF mass spectrometry characterization confirmed that these probes were sensitive and specific to β‐lactamase and could therefore serve for covalent and localized fluorescence labeling of the enzyme structure. Moreover, this β‐lactamase‐induced covalent labeling provides quantitative analysis of the resistant bacterial population (down to 5 %) by high resolution flow cytometry, and allows single‐cell detection and direct observation of bacterial enzyme activity in resistant pathogenic species. This approach offers great promise for clinical investigations and microbiological research.  相似文献   

3.
β‐Lactam antibiotics are generally perceived as one of the greatest inventions of the 20th century, and these small molecular compounds have saved millions of lives. However, upon clinical application of antibiotics, the β‐lactamase secreted by pathogenic bacteria can lead to the gradual development of drug resistance. β‐Lactamase is a hydrolase that can efficiently hydrolyze and destroy β‐lactam antibiotics. It develops and spreads rapidly in pathogens, and the drug‐resistant bacteria pose a severe threat to human health and development. As a result, detecting and inhibiting the activities of β‐lactamase are of great value for the rational use of antibiotics and the treatment of infectious diseases. At present, many specific detection methods and inhibitors of β‐lactamase have been developed and applied in clinical practice. In this Minireview, we describe the resistance mechanism of bacteria producing β‐lactamase and further summarize the fluorogenic probes, inhibitors of β‐lactamase, and their applications in the treatment of infectious diseases. It may be valuable to design fluorogenic probes with improved selectivity, sensitivity, and effectiveness to further identify the inhibitors for β‐lactamases and eventually overcome bacterial resistance.  相似文献   

4.
Biocompatible and proteolysis‐resistant poly‐β‐peptides have broad applications and are dominantly synthesized via the harsh and water‐sensitive ring‐opening polymerization of β‐lactams in a glovebox or using a Schlenk line, catalyzed by the strong base LiN(SiMe3)2. We have developed a controllable and water‐insensitive ring‐opening polymerization of β‐amino acid N‐thiocarboxyanhydrides (β‐NTAs) that can be operated in open vessels to prepare poly‐β‐peptides in high yields, with diverse functional groups, variable chain length, narrow dispersity and defined architecture. These merits imply wide applications of β‐NTA polymerization and resulting poly‐β‐peptides, which is validated by the finding of a HDP‐mimicking poly‐β‐peptide with potent antimicrobial activities. The living β‐NTA polymerization enables the controllable synthesis of random, block copolymers and easy tuning of both terminal groups of polypeptides, which facilitated the unravelling of the antibacterial mechanism using the fluorophore‐labelled poly‐β‐peptide.  相似文献   

5.
Carbapenem‐resistant Gram‐negative bacteria (GNB) are heading the list of pathogens for which antibiotics are the most critically needed. Many antibiotics are either unable to penetrate the outer‐membrane or are excluded by efflux mechanisms. Here, we report a cationic block β‐peptide (PAS8‐b‐PDM12) that reverses intrinsic antibiotic resistance in GNB by two distinct mechanisms of action. PAS8‐b‐PDM12 does not only compromise the integrity of the bacterial outer‐membrane, it also deactivates efflux pump systems by dissipating the transmembrane electrochemical potential. As a result, PAS8‐b‐PDM12 sensitizes carbapenem‐ and colistin‐resistant GNB to multiple antibiotics in vitro and in vivo. The β‐peptide allows the perfect alternation of cationic versus hydrophobic side chains, representing a significant improvement over previous antimicrobial α‐peptides sensitizing agents. Together, our results indicate that it is technically possible for a single adjuvant to reverse innate antibiotic resistance in all pathogenic GNB of the ESKAPE group, including those resistant to last resort antibiotics.  相似文献   

6.
Antimicrobial resistance (AMR), the ability of a bacterial species to resist the action of an antimicrobial drug, has been on the rise due to the widespread use of antimicrobial agents. Per the World Health Organization, AMR has an estimated annual cost of USD 34 billion in the US and is predicted to be the number one cause of death worldwide by 2050. One way AMR bacteria can spread, and by which individuals can contract AMR infections, is through contaminated water. Monitoring AMR bacteria in the environment currently requires that samples be transported to a central laboratory for slow and labor intensive tests. We have developed an inexpensive assay using paper-based analytical devices (PADs) that can test for the presence of β-lactamase-mediated resistance. To demonstrate viability, the PAD was used to detect β-lactam resistance in wastewater and sewage and identified resistance in individual bacterial species isolated from environmental water sources.  相似文献   

7.
The spread of antibiotic resistance in pathogenic bacteria has become one of the major concerns to public health. Improved monitoring of drug resistance is of high importance for infectious disease control. One of the major mechanisms for bacteria to overcome treatment of antibiotics is the production of β‐lactamases, which are enzymes that hydrolyze the β‐lactam ring of the antibiotic. In this study, we have developed a self‐immobilizing and fluorogenic probe for the detection of β‐lactamase activity. This fluorogenic reagent, upon activation by β‐lactamases, turns on a fluorescence signal and, more importantly, generates a covalent linkage to the target enzymes or the nearby proteins. The covalent labeling of enzymes was confirmed by SDS‐PAGE analysis and MALDI‐TOF mass spectrometry. The utility of this structurally simple probe was further confirmed by the fluorescent labeling of a range of β‐lactamase‐expressing bacteria.  相似文献   

8.
Antimicrobial resistance poses serious public health concerns and antibiotic misuse/abuse further complicates the situation; thus, it remains a considerable challenge to optimize/improve the usage of currently available drugs. We report a general strategy to construct a bacterial strain‐selective delivery system for antibiotics based on responsive polymeric vesicles. In response to enzymes including penicillin G amidase (PGA) and β‐lactamase (Bla), which are closely associated with drug‐resistant bacterial strains, antibiotic‐loaded polymeric vesicles undergo self‐immolative structural rearrangement and morphological transitions, leading to sustained release of antibiotics. Enhanced stability, reduced side effects, and bacterial strain‐selective drug release were achieved. Considering that Bla is the main cause of bacterial resistance to β‐lactam antibiotic drugs, as a further validation, we demonstrate methicillin‐resistant S. aureus (MRSA)‐triggered release of antibiotics from Bla‐degradable polymeric vesicles, in vitro inhibition of MRSA growth, and enhanced wound healing in an in vivo murine model.  相似文献   

9.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

10.
Low‐melting β‐cyclodextrin/N‐methylurea (NMU) mixture, an efficient catalytic system for ligand‐free Suzuki and Heck couplings in the presence of fresh native β‐CD‐capped Pd0 nanoparticles, has been successfully reported. This natural and convenient system can be performed in air and could afford the corresponding cross‐coupled products in good to excellent isolated yields after a simple workup under every low Pd loading (0.05 mol%). Remarkably, the catalytic system can be recycled and reused without loss of catalytic activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Antibiotic resistance has emerged as a major threat to global health care. This is largely due to the fact that many pathogens have developed strategies to acquire resistance to antibiotics. Metallo‐β‐lactamases (MBL) have evolved to inactivate most of the commonly used β‐lactam antibiotics. AIM‐1 is one of only a few MBLs from the B3 subgroup that is encoded on a mobile genetic element in a major human pathogen. Here, its mechanism of action was characterised with a combination of spectroscopic and kinetic techniques and compared to that of other MBLs. Unlike other MBLs it appears that AIM‐1 has two avenues available for the turnover of the substrate nitrocefin, distinguished by the identity of the rate‐limiting step. This observation may be relevant with respect to inhibitor design for this group of enzymes as it demonstrates that at least some MBLs are very flexible in terms of interactions with substrates and possibly inhibitors.  相似文献   

12.
The photochemical behavior of various substituted epoxycarbonyl compounds consisting of more than one possible photo‐labile site (i.e. δ‐hydrogen, β‐hydrogen and epoxide ring) has been investigated. These compounds on photo‐irradiation produced the β‐hydroxyenones in an eco‐friendly green approach. Mechanistically, these photo‐transformations have been envisaged to occur via an intramolecular β‐hydrogen abstraction by the carbonyl group of benzoyl moiety to generate the 1,3‐biradical followed by epoxide ring opening that isomerizes into the photoproducts. The photolysis of the probed epoxy ketones didn’t furnish any photoproduct through δ‐hydrogen abstraction, whatsoever. This exclusive preference for β‐H abstraction over δ‐H abstraction by carbonyl group has been vindicated by the MM2 energy mini‐ mized program for the investigated photochemical substrates. The structures of these photoproducts were established from the analysis of their spectral parameters (IR, 1H/13C NMR and Mass) and single crystal X‐ray crystallography data.  相似文献   

13.
Muropeptides are a group of bacterial natural products generated from the cell wall in the course of its turnover. These compounds are cell‐wall recycling intermediates and are also involved in signaling within the bacterium. However, the identity of these signaling molecules remains elusive. The identification and characterization of 20 muropeptides from Pseudomonas aeruginosa is described. The least abundant of these metabolites is present at 100 and the most abundant at 55,000 molecules per bacterium. Analysis of these muropeptides under conditions of induction of resistance to a β‐lactam antibiotic identified two signaling muropeptides (N‐acetylglucosamine‐1,6‐anhydro‐N‐acetylmuramyl pentapeptide and 1,6‐anhydro‐N‐acetylmuramyl pentapeptide). Authentic synthetic samples of these metabolites were shown to activate expression of β‐lactamase in the absence of any β‐lactam antibiotic, thus indicating that they serve as chemical signals in this complex biochemical pathway.  相似文献   

14.
The fragment β(25–35) of the amyloid β‐peptide, like its parent βA4, has shown neurotrophic and late neurotoxic activities in cultured cells. The 3D structure of this important peptide was examined by 1H and 13C 2D‐NMR and MD simulations in DMSO‐d6 and water. The NMR parameters of chemical shift, 3J(N,Hα) coupling constants, temperature coefficients of NH chemical shifts and the pattern of intra and inter‐residue NOEs were used to deduce the structures. In DMSO‐d6, the peptide was found to take up a type I β‐turn around the C‐terminal residues Ile8–Gly9–Leu10–Met11, whereas in water at pH 5.5, it adopts a random coil conformation. This is only the second report of a β‐turn in the β‐amyloid class of peptides. The solution structures generated using restrained molecular dynamics were refined by MARDIGRAS to an R factor of 0.33 in the case of DMSO‐d6 and to 0.56 for water. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Enzymes often use nucleophilic serine, threonine, and cysteine residues to achieve the same type of reaction; the underlying reasons for this are not understood. While bacterial d,d ‐transpeptidases (penicillin‐binding proteins) employ a nucleophilic serine, l,d ‐transpeptidases use a nucleophilic cysteine. The covalent complexes formed by l,d ‐transpeptidases with some β‐lactam antibiotics undergo non‐hydrolytic fragmentation. This is not usually observed for penicillin‐binding proteins, or for the related serine β‐lactamases. Replacement of the nucleophilic serine of serine β‐lactamases with cysteine yields enzymes which fragment β‐lactams via a similar mechanism as the l,d ‐transpeptidases, implying the different reaction outcomes are principally due to the formation of thioester versus ester intermediates. The results highlight fundamental differences in the reactivity of nucleophilic serine and cysteine enzymes, and imply new possibilities for the inhibition of nucleophilic enzymes.  相似文献   

16.
β‐nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β‐NMR has previously been successfully applied in the fields of nuclear and solid‐state physics. In this work, β‐NMR is applied, for the first time, to record an NMR spectrum for a species in solution. 31Mg β‐NMR spectra are measured for as few as 107 magnesium ions in ionic liquid (EMIM‐Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β‐NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry.  相似文献   

17.
β‐Amino acid N‐carboxy anhydrides (β‐NCAs) are rarely used in the synthesis of β‐peptides, which is due mainly to the poor availability of these potentially useful substrates. Herein, we describe the heretofore challenging synthesis of β‐NCAs via a single‐step, rapid, and mild formation using pH flash switching and flash dilution, which are aspects of micro‐flow technology. We synthesized 15 β‐NCAs in good to excellent yields that included acid‐labile β‐NCAs that cannot be readily synthesized using the conventional Leuchs approach. Scaled‐up synthesis using this process can be readily achieved via continuous operation.  相似文献   

18.
Polystyrene (PS) microspheres coated with β‐cyclodextrin (β‐CD) were fabricated via γ‐ray‐induced emulsion polymerization in a ternary system of styrene/β‐CD/water (St/β‐CD/water). The solid inclusion complex of St and β‐CD particles formed at the St droplets–water interface can stabilize the emulsion as the surfactant. TEM and XPS results showed that β‐CD remains on the surface of PS particles. The average size of the PS particles increases from 186 to 294 nm as the weight ratio of β‐CD to St rises from 5% to 12.5%. The water contact angle (CA) of PS latex film is lower than 90°, and reduces with the β‐CD content even to 36°. Thus, this work provides a new and one‐pot strategy to surface hydrophilic modification on hydrophobic polymer particles with cyclodextrins through radiation emulsion polymerization.  相似文献   

19.
β‐Lactamases threaten the clinical use of carbapenems, which are considered antibiotics of last resort. The classical mechanism of serine carbapenemase catalysis proceeds through hydrolysis of an acyl‐enzyme intermediate. We show that class D β‐lactamases also degrade clinically used 1β‐methyl‐substituted carbapenems through the unprecedented formation of a carbapenem‐derived β‐lactone. β‐Lactone formation results from nucleophilic attack of the carbapenem hydroxyethyl side chain on the ester carbonyl of the acyl‐enzyme intermediate. The carbapenem‐derived lactone products inhibit both serine β‐lactamases (particularly class D) and metallo‐β‐lactamases. These results define a new mechanism for the class D carbapenemases, in which a hydrolytic water molecule is not required.  相似文献   

20.
Our lab has developed a new series of self‐immolative MR agents for the rapid detection of enzyme activity in mouse models expressing β‐galactosidase (β‐gal). We investigated two molecular architectures to create agents that detect β‐gal activity by modulating the coordination of water to GdIII. The first is an intermolecular approach, wherein we designed several structural isomers to maximize coordination of endogenous carbonate ions. The second involves an intramolecular mechanism for q modulation. We incorporated a pendant coordinating carboxylate ligand with a 2, 4, 6, or 8 carbon linker to saturate ligand coordination to the GdIII ion. This renders the agent ineffective. We show that one agent in particular (6‐C pendant carboxylate) is an extremely effective MR reporter for the detection of enzyme activity in a mouse model expressing β‐gal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号