首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Atomic layer deposition (ALD) of the pyrite‐type metal disulfides FeS2, CoS2, and NiS2 is reported for the first time. The deposition processes use iron, cobalt, and nickel amidinate compounds as the corresponding metal precursors and the H2S plasma as the sulfur source. All the processes are demonstrated to follow ideal self‐limiting ALD growth behavior to produce fairly pure, smooth, well‐crystallized, stoichiometric pyrite FeS2, CoS2, and NiS2 films. By these processes, the FeS2, CoS2, and NiS2 films can also be uniformly and conformally deposited into deep narrow trenches with aspect ratios as high as 10:1, which thereby highlights the broad and promising applicability of these ALD processes for conformal film coatings on complex high‐aspect‐ratio 3D architectures in general.  相似文献   

2.
Transition‐metal phosphides (TMP) prepared by atomic layer deposition (ALD) are reported for the first time. Ultrathin Co‐P films were deposited by using PH3 plasma as the phosphorus source and an extra H2 plasma step to remove excess P in the growing films. The optimized ALD process proceeded by self‐limited layer‐by‐layer growth, and the deposited Co‐P films were highly pure and smooth. The Co‐P films deposited via ALD exhibited better electrochemical and photoelectrochemical hydrogen evolution reaction (HER) activities than similar Co‐P films prepared by the traditional post‐phosphorization method. Moreover, the deposition of ultrathin Co‐P films on periodic trenches was demonstrated, which highlights the broad and promising potential application of this ALD process for a conformal coating of TMP films on complex three‐dimensional (3D) architectures.  相似文献   

3.
Encapsulation methods have shown to be effective in imparting improved stability to metal-halide perovskite nanocrystals (NCs). Atomic layer deposition (ALD) of metal oxides is one of the promising approaches for such encapsulation, yet better control on the process parameters are required to achieve viable lifetimes for several optoelectronic and photocatalytic applications. Herein, we optimize the ALD process of amorphous aluminum oxide (AlOx) as an encapsulating layer for CsPbBr3 NC thin films by using oxygen (O2) as a molecular diffusion probe to assess the uniformity of the deposited AlOx layer. When O2 reaches the NC surface, it extracts the photogenerated electrons, thus quenching the PL of the CsPbBr3 NCs. As the quality of the ALD layer improves, less quenching is expected. We compare three different ALD deposition modes. We find that the low temperature/high temperature and the exposure modes improve the quality of the alumina as a gas barrier when compared with the low temperature mode. We attribute this result to a better diffusion of the ALD precursor throughout the NC film. We propose the low temperature/high temperature as the most suitable mode for future implementation of multilayered coatings.  相似文献   

4.
The stoichiometric iron nitrides γ′‐Fe4N, ε‐Fe3N and ζ‐Fe2N were characterized by Mössbauer spectroscopy. The thermal decomposition of ε‐Fe3N was studied in‐situ by means of a specially developed Mössbauer furnace. We found ε‐Fe3N to γ′‐Fe4N and ε‐Fe3Nx (x ≥ 1.3) as decomposition products and determined the border of γ′/ε transformation at T ? 930 K. Mössbauer spectroscopy was applied to study in‐situ the thermal decomposition of the nitridometalate Li3[FeIIIN2] and the formation of Li2[(Li1‐xFeIx)N], the compound with the largest local magnetic field ever observed in an iron containing material. The kinetics of formation and the stability of Li2[(Li1‐xFeIx)N] was of particular interest in the present study.  相似文献   

5.
Gallium sulfide (GaxS) and copper gallium sulfide (CuxGaySz) were synthetized by atomic layer deposition (ALD), using copper acetylacetonate Cu(acac)2, hexakis(dimethylamino)digallium [Ga(NMe2)3]2 and hydrogen sulfide (H2S). Thanks to the compatibility of the CuxS and GaxS ALD windows, a supercycle strategy that combines single growth cycles of the two binary compounds was used to generate the ternary material. A wide range of compositions and properties can be obtained from Ga-rich to Cu-rich via copper gallium sulfide thin films. Structural, morphological, and optoelectronic characterizations were performed on all films. Surface and in-depth chemical compositions were determined by X-ray photoelectron spectroscopy profiling, allowing a better understanding of the chemical reactions involved during the growth process. In the case of GaxS films, other Ga precursors have been tested. Our experimental observations, combined with reported ones and density functional theory calculation results have highlighted the specific reactivity of alkylamido precursor in ALD chemistry. Compositional studies revealed a significant O content which origin is discussed and represents an important challenge to address in ALD of sulfide materials in general.  相似文献   

6.
The hydrogenated amorphous carbon nitride (a‐CNx:H) thin films were synthesized on the SS‐304 substrates using a dense plasma focus device. The a‐CNx:H thin films were synthesized using CH4/N2 admixture gas and 20 focus deposition shots on substrates placed at different distances from the anode top. X‐ray photoelectron spectroscopy and Raman analysis confirmed different C–N bonding in the a‐CNx:H thin films. A decrease in the N/C ratio as well as the sp3/sp2 ratio with an increase in the substrate distance has been observed. The higher amount of C–N formation for the film synthesized at 10 cm is observed which decreases with increasing distance. The X‐ray photoelectron spectroscopy and Raman analysis affirmed the C ≡ N presence in all the thin films synthesized at different distances. The morphology of the synthesized a‐CNx:H thin films showed nanoparticles and nanoparticle clusters formation at the surface. The hardness results showed comparatively lower hardness of the a‐CNx:H thin films due to the presence of C ≡ N. The C–N formation with lower amount of C ≡ N and a higher N/C ratio as well as a higher sp3/sp2 ratio for the films synthesized at 10 cm show reasonably higher hardness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Copper‐doped iron sulfide (CuxFe1?xS, x = 0.010–0.180) thin films were deposited using a single‐source precursor, Cu(LH)2Cl2 (LH = monoacetylferrocene thiosemicarbazone), by aerosol‐assisted chemical vapor deposition technique. The Cu‐doped FeS thin films were deposited at different substrate temperatures, i.e. 250, 300, 350, 400 and 450 °C. The deposited thin films were characterized by X‐ray diffraction (XRD) patterns, Raman spectra, scanning electron microscopy, energy dispersive X‐ray analysis (EDX) and atomic force microscopy. XRD studies of Cu‐doped FeS thin films at all the temperatures revealed formation of single‐phase FeS structure. With increasing substrate temperature from 250 to 450 °C, there was change in morphology from wafer‐like to cylindrical plate‐like. EDX analysis showed that the doping percentage of copper increased as the substrate temperature increased from 250 to 450 °C. Raman data supports the doping of copper in FeS films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Owing to the limited availability of suitable precursors for vapor phase deposition of rare-earth containing thin-film materials, new or improved precursors are sought after. In this study, we explored new precursors for atomic layer deposition (ALD) of cerium (Ce) and ytterbium (Yb) containing thin films. A series of homoleptic tris-guanidinate and tris-amidinate complexes of cerium (Ce) and ytterbium (Yb) were synthesized and thoroughly characterized. The C-substituents on the N-C-N backbone (Me, NMe2, NEt2, where Me=methyl, Et=ethyl) and the N-substituents from symmetrical iso-propyl (iPr) to asymmetrical tertiary-butyl (tBu) and Et were systematically varied to study the influence of the substituents on the physicochemical properties of the resulting compounds. Single crystal structures of [Ce(dpdmg)3] 1 and [Yb(dpdmg)3] 6 (dpdmg=N,N'-diisopropyl-2-dimethylamido-guanidinate) highlight a monomeric nature in the solid-state with a distorted trigonal prismatic geometry. The thermogravimetric analysis shows that the complexes are volatile and emphasize that increasing asymmetry in the complexes lowers their melting points while reducing their thermal stability. Density functional theory (DFT) was used to study the reactivity of amidinates and guanidinates of Ce and Yb complexes towards oxygen (O2) and water (H2O). Signified by the DFT calculations, the guanidinates show an increased reactivity toward water compared to the amidinate complexes. Furthermore, the Ce complexes are more reactive compared to the Yb complexes, indicating even a reactivity towards oxygen potentially exploitable for ALD purposes. As a representative precursor, the highly reactive [Ce(dpdmg)3] 1 was used for proof-of-principle ALD depositions of CeO2 thin films using water as co-reactant. The self-limited ALD growth process could be confirmed at 160 °C with polycrystalline cubic CeO2 films formed on Si(100) substrates. This study confirms that moving towards nitrogen-coordinated rare-earth complexes bearing the guanidinate and amidinate ligands can indeed be very appealing in terms of new precursors for ALD of rare earth based materials.  相似文献   

9.
Herein, the assembly of CsPbBr3 QD/AlOx inorganic nanocomposites, by using atomic layer deposition (ALD) for the growth of the amorphous alumina matrix (AlOx ), is described as a novel protection scheme for such QDs. The nucleation and growth of AlOx on the QD surface was thoroughly investigated by miscellaneous techniques, which highlighted the importance of the interaction between the ALD precursors and the QD surface to uniformly coat the QDs while preserving the optoelectronic properties. These nanocomposites show exceptional stability towards exposure to air (for at least 45 days), irradiation under simulated solar spectrum conditions (for at least 8 h), and heat (up to 200 °C in air), and finally upon immersion in water. This method was extended to the assembly of CsPbBrx I3−x QD/AlOx and CsPbI3 QD/AlOx nanocomposites, which were more stable than the pristine QD films.  相似文献   

10.
Herein, the assembly of CsPbBr3 QD/AlOx inorganic nanocomposites, by using atomic layer deposition (ALD) for the growth of the amorphous alumina matrix (AlOx ), is described as a novel protection scheme for such QDs. The nucleation and growth of AlOx on the QD surface was thoroughly investigated by miscellaneous techniques, which highlighted the importance of the interaction between the ALD precursors and the QD surface to uniformly coat the QDs while preserving the optoelectronic properties. These nanocomposites show exceptional stability towards exposure to air (for at least 45 days), irradiation under simulated solar spectrum conditions (for at least 8 h), and heat (up to 200 °C in air), and finally upon immersion in water. This method was extended to the assembly of CsPbBrx I3−x QD/AlOx and CsPbI3 QD/AlOx nanocomposites, which were more stable than the pristine QD films.  相似文献   

11.
We report on the electroless deposition of thin films of copper on poly(tetrafluoroethylene) (PTFE) and their use as substrates for electropolymerization of polypyrrole. Argon plasma‐treated PTFE films were modified by silanization using N‐[3(trimethoxysilyl)propyl]diethylenetriamine (TMS). The TMS‐modified PTFE films were subsequently activated by PdCl2 for the electroless deposition of copper. The omission of the commonly used SnCl2 sensitization step represents a significant process enhancement with environmental and cost benefits. The surface composition of the substrate (before and after surface treatments) and overlayer films was studied using high‐resolution x‐ray photoelectron spectroscopy. A combination of time‐of‐flight secondary ion mass spectrometry and water contact‐angle measurements was also used to study the PTFE surface after argon plasma treatment. The Cu/PTFE films were used as substrates for subsequent pyrrole electropolymerization in aqueous dodecylbenzene sulphonic acid (DBSA) solution. The DBSA‐doped polypyrrole overlayers were successfully deposited on the Cu/PTFE surface using a constant applied potential of 1.5 V. The resulting material exhibited a doping level of 39%, determined using chemical component analysis of the N 1s photoelectron peak. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Nanocrystalline zirconium carbonitride (Zr‐C‐N) and zirconium oxide (ZrO2) films were deposited by chemical vapor deposition (CVD) of zirconium‐tetrakis‐diethylamide (Zr(NEt2)4) and ‐tert‐butyloxide (Zr(OBut)4), respectively. The films were deposited on iron substrates and characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The Zr‐C‐N films show blue, golden brown or bronze colours, with colour stability depending upon the precursor composition (pure metal amide or mixed with Et2NH). The deposition temperature showed no pronounced effect on the granular morphology of the Zr‐C‐N films. The XRD data of the films correspond to the formation of carbonitride phase whereas the XPS analyses revealed a strong surface oxidation and incorporation of oxygen in the film. The films deposited using a mixture of Zr(NEt2)4 and Et2NH showed higher N content, better adhesion and scratch resistance when compared to films obtained from the CVD of pure Zr(NEt2)4. Subject to the precursor composition and deposition temperature (550‐750 °C), the microhardness values of Zr‐C‐N films were found to be in the range 2.11‐5.65 GPa. For ZrO2 films, morphology and phase composition strongly depend on the deposition temperature. The CVD deposits obtained at 350 °C show tetragonal ZrO2 to be the only crystalline phase. Upon increasing the deposition temperature to 450 °C, a mixture of tetragonal and monoclinic modifications was formed with morphology made up of interwoven elongated grains. At higher temperatures (550 and 650 °C), pure monoclinic phase was obtained with facetted grains and developed texture.  相似文献   

13.
Among the magnetic metal/semiconductor contacts, the Fe/GaAs system has been widely studied owing to its potential applications in electronic devices. In contrast, there are not many studies concerning the Fe/AlxGa1?xAs contact, and in particular there are no reports concerning the changes induced in the interfacial zone by the presence of Al. In this work, thin polycrystalline iron films were deposited by ion beam sputtering at room temperature on a 300 nm thick Al0.25Ga0.75As layer grown by molecular beam epitaxy onto GaAs(001). X‐ray diffraction analysis showed that the iron films are polycrystalline, and indications of a (002) texture of the film were observed. The fine scale analysis of the interface was achieved by high‐resolution transmission electron microscopy (HRTEM) observations, the results of which are compared with the physicochemical information obtained from electron‐induced x‐ray emission spectroscopy, by analysing the Al 3p valence states at the Fe/AlxGa1?xAs interface. The HRTEM experiments on cross‐section samples indicate that the interfacial zone between iron and AlGaAs is limited to <1.5 nm in thickness. X‐ray emission spectroscopy showed the presence of Al atoms in an FeAl‐like environment at the interface, and the existence of wrong bonds and point defects. The estimated width of the perturbed interface (2.0 ± 0.5 nm) is in agreement with the HRTEM results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrogen generation from formic acid (FA) has received significant attention.The challenge is to obtain a highly active catalyst under mild conditions for practical applications.Here atomic layer deposition (ALD) of FeOx was performed to deposit an ultrathin oxide coating layer to a Pd/C catalyst,therein the FeOx coverage was precisely controlled by ALD cycles.Transmission electron microscopy and powder X-ray diffraction measurements suggest that the FeOx coating layer improved the thermal stability of Pd nanoparticles (NPs).X-ray photoelectron spectroscopy measurement showed that deposition of FeOx on the Pd NPs caused a positive shift of Pd3d binding energy.In the FA dehydrogenation reaction,the ultrathin FeOx layer on the Pd/C could considerably improve the catalytic activity,and Pd/C coated with 8 cycles of FeOx showed an optimized activity with turnover frequency being about 2 times higher than the uncoated one.The improved activities were in a volcanoshape as a function of the number of FeOx ALD cycles,indicating the coverage of FeOx is critical for the optimized activity.In summary,simultaneous improvements of activity and thermal stability of Pd/C catalyst by ultra-thin FeOx overlayer suggest to be an effective way to design active catalysts for the FA dehydrogenation reaction.  相似文献   

15.
The deposition rate and surface properties of SiOx films were prepared and investigated using remote atmospheric pressure plasma (APP) jet. The APP, generated with low frequency power at 16 kHz, was fed with tetraethoxysilane (TEOS)/air gas mixture. After deposition, the SiOx films were analyzed for chemical characteristics, elemental composition, surface morphology, and hardness. It was found that the deposition substrate temperature is the key factor to affect the deposition rate of remote APP chemical vapor deposition process. Fourier transform infrared (FTIR) spectra indicated that APP deposited SiOx films are an inorganic feature. XPS examination revealed that the SiOx films contained approximately 30% silicon, 58% oxygen and 12% carbon. Atomic forced microscopy (AFM) analysis results indicated a smooth surface of SiOx films in deposition under higher substrate temperature. Also, pencil hardness tests indicated that the hardness of APP deposited SiOx films was greatly improved with increasing substrate temperatures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Manganese oxide (MnOx) shows great potential in the areas of nano-electronics, magnetic devices and so on. Since the characteristics of precise thickness control at the atomic level and self-align lateral patterning, area-selective deposition (ASD) of the MnOx films can be used in some key steps of nanomanufacturing. In this work, MnOx films are deposited on Pt, Cu and SiO2 substrates using Mn(EtCp)2 and H2O over a temperature range of 80–215 °C. Inherently area-selective atomic layer deposition (ALD) of MnOx is successfully achieved on metal/SiO2 patterns. The selectivity improves with increasing deposition temperature within the ALD window. Moreover, it is demonstrated that with the decrease of electronegativity differences between M (M = Si, Cu and Pt) and O, the chemisorption energy barrier decreases, which affects the initial nucleation rate. The inherent ASD aroused by the electronegativity differences shows a possible method for further development and prediction of ASD processes.  相似文献   

17.
High‐quality phase‐pure MA1?xFAxPbI3 planar films (MA=methylammonium, FA=formamidinium) with extended absorption and enhanced thermal stability are difficult to deposit by regular simple solution chemistry approaches owing to crystallization competition between the easy‐to‐crystallize but unwanted δ‐FAPbI3/MAPbI3 and FAxMA1?xPbI3 requiring rigid crystallization conditions. Here A 2D–3D conversion to transform compact 2D mixed composition HMA1?xFAxPbI3Cl perovskite precursor films into 3D MA1?xFAxPbI3 (x=0.1–0.9) perovskites is presented. The designed Cl/I and H/FA(MA) ion exchange reaction induced fast transformation of compact 2D perovskite film, helping to form the phase‐pure and high quality MA1?xFAxPbI3 without δ‐FAPbI3 and MAPbI3 impurity. In all, we successfully developed a facile one‐step method to fabricate high quality phase‐pure MA1?xFAxPbI3 (x=0.1–0.9) perovskite films by 2D–3D conversion of HMA1?xFAxPbI3Cl perovskite. This 2D–3D conversion is a promising strategy for lead halide perovskite fabrication.  相似文献   

18.
Supported Pd catalysts are active in catalyzing the highly exothermic methane combustion reaction but tend to be deactivated owing to local hyperthermal environments. Herein we report an effective approach to stabilize Pd/SiO2 catalysts with porous Al2O3 overlayers coated by atomic layer deposition (ALD). 27Al magic angle spinning NMR analysis showed that Al2O3 overlayers on Pd particles coated by the ALD method are rich in pentacoordinated Al3+ sites capable of strongly interacting with adjacent surface PdOx phases on supported Pd particles. Consequently, Al2O3‐decorated Pd/SiO2 catalysts exhibit active and stable PdOx and Pd–PdOx structures to efficiently catalyze methane combustion between 200 and 850 °C. These results reveal the unique structural characteristics of Al2O3 overlayers on metal surfaces coated by the ALD method and provide a practical strategy to explore stable and efficient supported Pd catalysts for methane combustion.  相似文献   

19.
Chemical Transport of Iron Sulphide. II. Experimental Results on the Transport of FeSx with Iodine It is possible to deposite monocrystals of iron sulphide FeSx by means of CTR method using iodine as transport agent. The presence of sufficient, high sulfur partial pressures is the most important condition for the FeSx being transported, in other words: x must be equal or greater than approximately 1.04. The transport velocity and the shape of the deposited crystals depend on temperature, amount of iodine, and composition of the original material. The expected differences between the composition of the deposited solid and that of the residue can be verified experimentally.  相似文献   

20.
An iron compound containing guanidinate ligand [Fe((SiMe3)2NC(iPrN)2)2] was synthesized using a conventional lithium‐salt‐elimination reaction, and its chemical structure was characterized through elemental analysis, 1H‐NMR and single‐crystal X‐ray diffraction, respectively. The thermal properties of the compound were examined through thermogravimetric analysis (TGA), and the TGA results demonstrated that the compound possessed sufficient volatility and suitable thermal stability for the CVD process. Moreover, the deposition experiments were conducted using the synthesized compound as a precursor and O2 as an oxygen source to confirm its applicability as a CVD precursor, and α‐Fe2O3 films were successfully deposited at a relatively low deposition temperature (300°C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号