首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A family of nonlinear optical materials that contain the halide, oxide, and oxyhalide polar units simultaneously in a single structure, namely ABi2(IO3)2F5 (A=K ( 1 ), Rb ( 2 ), and Cs ( 3 )), have been designed and synthesized. They crystallize in the same polar space group (P 21) with a two‐dimensional double‐layered framework constructed by [BiF5]2− and [BiO2F4]5− units connected to each other by four F atoms, in which two [IO3] groups are linked to [BiO2F4]5− unit on the same side. A hanging Bi−F bond of [BiF5]2− unit is located on the other side via ionic interaction with the layer‐inserted alkali metal ions to form three‐dimensional structure. The well‐ordered alignments of these polar units lead to a very strong second‐harmonic generation response of 12 ( 1 ), 9.5 ( 2 ), and 7.5 ( 3 ) times larger than that of potassium dihydrogen phosphate under 1064 nm laser radiation. All of them exhibited a wide energy bandgap over 3.75 eV, suggesting that they will have a high laser damage threshold.  相似文献   

2.
The first metal iodate fluoride, Bi(IO3)F2, with a strong second harmonic generation (SHG) effect has been prepared. Bi(IO3)F2 crystallizes in the polar space group C2 and features a three‐dimensional [BiF2]+ cationic framework with IO3 groups capping the inner walls of the one‐dimensional tunnels. This [BiF2]+ cationic framework acts as a template for the assembly of the polar IO3 units in a favorable superposed fashion, which leads to the polar structure of the material. Bi(IO3)F2 displays a rather wide transmittance window (0.3–11 μm) and exhibits a very strong SHG response that is about 11.5 times larger than that of KH2PO4 (KDP) under 1064 nm laser radiation and the same as that of KTiOPO4 (KTP) under 2.05 μm laser radiation. Preliminary investigations indicate that Bi(IO3)F2 is a promising nonlinear optical material in the visible and mid‐IR region.  相似文献   

3.
An ammonium‐containing metal iodate fluoride compound, (NH4)Bi2(IO3)2F5, featuring a two‐dimensional double‐layered framework constructed by [BiO2F5]6? and [BiO4F4]9? polyhedra, as well as [IO3]? groups, was successfully synthesized. The well‐ordered alignment of these SHG‐active units leads to an extraordinary strong SHG response of 9.2 times that of KDP. Moreover, this compound possesses a large birefringence (Δn=0.0690 at 589.3 nm), a wide energy band gap (Eg=3.88 eV), and a high laser damage threshold (LDT; 40.2×AgGaS2). In particular, thermochromic behavior was observed for the first time in this type of compound. Such multifunctional crystals will expand the application of nonlinear optical materials.  相似文献   

4.
An ammonium-containing metal iodate fluoride compound, (NH4)Bi2(IO3)2F5, featuring a two-dimensional double-layered framework constructed by [BiO2F5]6− and [BiO4F4]9− polyhedra, as well as [IO3] groups, was successfully synthesized. The well-ordered alignment of these SHG-active units leads to an extraordinary strong SHG response of 9.2 times that of KDP. Moreover, this compound possesses a large birefringence (Δn=0.0690 at 589.3 nm), a wide energy band gap (Eg=3.88 eV), and a high laser damage threshold (LDT; 40.2×AgGaS2). In particular, thermochromic behavior was observed for the first time in this type of compound. Such multifunctional crystals will expand the application of nonlinear optical materials.  相似文献   

5.
Two new polar potassium gold iodates, namely, K2Au(IO3)5 (Cmc21) and β‐KAu(IO3)4 (C2), have been synthesized and structurally characterized. Both compounds feature zero‐dimensional polar [Au(IO3)4]? units composed of an AuO4 square‐planar unit coordinated by four IO3? ions in a monodentate fashion. In β‐KAu(IO3)4, isolated [Au(IO3)4]? ions are separated by K+ ions, whereas in K2Au(IO3)5, isolated [Au(IO3)4]? ions and non‐coordinated IO3? units are separated by K+ ions. Both compounds are thermally stable up to 400 °C and exhibit high transmittance in the NIR region (λ=800–2500 nm) with measured optical band gaps of 2.65 eV for K2Au(IO3)5 and 2.75 eV for β‐KAu(IO3)4. Powder second‐harmonic generation measurements by using λ=2.05 μm laser radiation indicate that K2Au(IO3)5 and β‐KAu(IO3)4 are both phase‐matchable materials with strong SHG responses of approximately 1.0 and 1.3 times that of KTiOPO4, respectively. Theoretical calculations based on DFT methods confirm that such strong SHG responses originate from a synergistic effect of the AuO4 and IO3 units.  相似文献   

6.
The first alkali‐metal vanadium iodate fluoride, CsVO2F(IO3), with a novel 3D anionic framework, has been rationally designed and hydrothermally synthesized. The 3D [VO2F(IO3)]? framework in CsVO2F(IO3) is built from 0D Λ‐shaped cis‐[VO3F(IO3)2]4? polyanions via corner‐sharing of oxo anions and bridging of the iodate groups. CsVO2F(IO3) displays both a strong second‐harmonic generation (SHG) 1.1 times as strong as KTiOPO4 (KTP) under 2.05 μm laser radiation and high laser‐induced damage threshold (LIDT) of 107.9 MW cm?2. This work provides a new route to design SHG crystals with stable 3D anionic structures from low‐dimensional structural building units.  相似文献   

7.
The first alkali-metal vanadium iodate fluoride, CsVO2F(IO3), with a novel 3D anionic framework, has been rationally designed and hydrothermally synthesized. The 3D [VO2F(IO3)] framework in CsVO2F(IO3) is built from 0D Λ-shaped cis-[VO3F(IO3)2]4− polyanions via corner-sharing of oxo anions and bridging of the iodate groups. CsVO2F(IO3) displays both a strong second-harmonic generation (SHG) 1.1 times as strong as KTiOPO4 (KTP) under 2.05 μm laser radiation and high laser-induced damage threshold (LIDT) of 107.9 MW cm−2. This work provides a new route to design SHG crystals with stable 3D anionic structures from low-dimensional structural building units.  相似文献   

8.
Hydrothermally synthesized dipotassium gallium {hydrogen bis[hydrogenphosphate(V)]} difluoride, K2Ga[H(HPO4)2]F2, is isotypic with K2Fe[H(HPO4)2]F2. The main features of the structure are ([Ga{H(HPO4)2}F2]2−)n columns consisting of centrosymmetric Ga(F2O4) octahedra [average Ga—O = 1.966 (3) Å and Ga—F = 1.9076 (6) Å] stacked above two HPO4 tetrahedra [average P—O = 1.54 (2) Å] sharing two O‐atom vertices. The charge‐balancing seven‐coordinate K+ cations [average K—O,F = 2.76 (2) Å] lie in the intercolumn space, stabilizing a three‐dimensional structure. Strong [O...O = 2.4184 (11) Å] and medium [O...F = 2.6151 (10) Å] hydrogen bonds further reinforce the connections between adjacent columns.  相似文献   

9.
Electronic distortions, which are inherent in the oxide fluoride anions [MOF5]2− (M = Nb and Ta), provide an origin of polar molecular arrangements for the development of new polar second‐harmonic‐generating, piezo‐, pyro‐ and ferroelectric materials. It is still a challenge to expand this approach to the realm of metal–organic polymers, while insufficient control over the environment of the [MOF5]2− units results in their orientational disorder and loss of polarity. The structures of catena‐poly[[tris(3,4,5‐trimethyl‐1H‐pyrazole‐κN2)copper(II)]‐μ‐oxido‐[tetrafluoridoniobium(V)]‐μ‐fluorido], [CuNbF5O(C6H10N2)3]n, (I), and its isostructural pentafluoridooxidotantalate(V) analogue, catena‐poly[[tris(3,4,5‐trimethyl‐1H‐pyrazole‐κN2)copper(II)]‐μ‐oxido‐[tetrafluoridotantalum(V)]‐μ‐fluorido], [CuTaF5O(C6H10N2)3]n, (II), are the first examples of the strict orientational order of [MOF5]2− (M = Nb and Ta) in one‐dimensional coordination chains. A primary factor for the exact discrimination of one orientation of the anion over the other is strong and shape‐selective multiple interactions of [MOF5]2− with the inherently acentric CuL32+ platform, with a set of two coordination and three N—H…F hydrogen bonds. In (I) and (II), the Cu2+ ions exhibit distorted square‐pyramidal fivefold coordination formed by three pyrazole N atoms and the oxide O atom, defining the equatorial plane, and the anionic bridging F atom (which is trans with respect to the M—O bond) residing in the apical position. The inorganic bridges connect CuL32+ moieties into polar zigzag chains; the bulk polarity of the structure is eliminated by an antiparallel alignment of the individual chains. These chains are further connected through C—H…F hydrogen bonding and very weak C—H…π interactions of the organic ligands.  相似文献   

10.
The title racemic heterometallic dinuclear compound, [MnSn(C2H2O2S)3(H2O)5], (I), contains one main group SnIV metal centre and one transition metal MnII centre, and, by design, links the MnII centre to the building unit of the (Δ/Λ) [SnL3]2− complex anion (L is the 2‐sulfidoacetate dianion). In this cluster, the SnIV centre of the (Δ/Λ) [SnL3]2− unit is coordinated by three O atoms and three S atoms from three L ligands to form an [SnO3S3] octahedral coordination environment. The MnII centre is in an [MnO6] octahedral coordination environment, with five O atoms from five water molecules and the sixth from the μ2L ligand of the (Δ/Λ) [SnL3]2− unit. Between adjacent dinuclear molecules, there are many hydrogen‐bond interactions of O—H...O, O—H...S, C—H...O and C—H...S types. Of these, eight pairs of O—H...O hydrogen bonds fuse all the dinuclear molecules into two‐dimensional supramolecular sheets along the bc plane. Adjacent supramolecular sheets are further connected through O—H...S hydrogen bonds to give a three‐dimensional supramolecular network.  相似文献   

11.
In bis(2‐carboxypyridinium) hexafluorosilicate, 2C6H6NO2+·SiF62−, (I), and bis(2‐carboxyquinolinium) hexafluorosilicate dihydrate, 2C10H8NO2+·SiF62−·2H2O, (II), the Si atoms of the anions reside on crystallographic centres of inversion. Primary inter‐ion interactions in (I) occur via strong N—H...F and O—H...F hydrogen bonds, generating corrugated layers incorporating [SiF6]2− anions as four‐connected net nodes and organic cations as simple links in between. In (II), a set of strong N—H...F, O—H...O and O—H...F hydrogen bonds, involving water molecules, gives a three‐dimensional heterocoordinated rutile‐like framework that integrates [SiF6]2− anions as six‐connected and water molecules as three‐connected nodes. The carboxyl groups of the cation are hydrogen bonded to the water molecule [O...O = 2.5533 (13) Å], while the N—H group supports direct bonding to the anion [N...F = 2.7061 (12) Å].  相似文献   

12.
The asymmetric unit of the title compound, [Pb2(C8H3IO4)2(CH4O)]n, contains two PbII atoms, two 5‐iodoisophthalate (5‐IIP2−) ligands and one coordinated methanol molecule. One Pb atom is eight‐coordinated, surrounded by seven carboxylate O atoms from five 5‐IIP2− ligands and one O atom from the terminal methanol ligand. The other Pb atom is seven‐coordinated in a hemidirected geometry, surrounded by seven carboxylate O atoms from five 5‐IIP2− ligands. Both Pb atoms are connected by carboxylate groups to form a one‐dimensional infinite rod along the a axis; neighbouring rods are further linked by the aromatic rings of 5‐IIP2− to generate the final three‐dimensional structure with channels in the a direction. An O—H...O hydrogen bond between the methanol ligand and one of the carboxylate groups of a 5‐IIP2− ligand stablizes the three‐dimensional framework. Interestingly, a centrosymmetric rhombus‐shaped I4 unit is formed by four 5‐IIP2− ligands, with I...I distances of 3.8841 (8) and 3.9204 (8) Å.  相似文献   

13.
The salt, [N(CH3)4][IO2F2], was prepared from [N(CH3)4][IO3] and 49% aqueous HF, and characterized by Raman, infrared, and 19F NMR spectroscopy. Crystals of [N(CH3)4]2[IO2F2][HF2] were obtained by reduction of [N(CH3)4][cis-IO2F4] in the presence of [N(CH3)4][F] in CH3CN solvent and were characterized by Raman spectroscopy and single-crystal X-ray diffraction: C2/m, a = 14.6765(2) Å, b = 8.60490(10) Å, c = 13.9572(2) Å, β = 120.2040(10)°, V = 1523.35(3) Å3, Z = 4 and R = 0.0192 at 210 K. The crystal structure consists of two IO2F2 anions that are symmetrically bridged by two HF2 anions, forming a [F2O2I(FHF)2IO2F2]4− dimer. The symmetric bridging coordination for the HF2 anion in this structure represents a new bonding modality for the bifluoride anion.  相似文献   

14.
The Raman and IR spectra of salts of [M{IO5(OH)}2]5− (M = Cu, Ag, Au), [M(OH)2{IO5(OH)}2]6− (M = Pd, Pt), trans-[MO2{IO5(OH)}2]6− (M = Ru, Os) and {IM6O24]5− (M = Mo, W) are reported and assignments proposed.  相似文献   

15.
A photochemical route to salts consisting of difluorooxychloronium(V) cations, [ClOF2]+, and hexafluorido(non)metallate(V) anions, [MF6] (M=V, Nb, Ta, Ru, Os, Ir, P, Sb) is presented. As starting materials, either metals, oxygen and ClF3 or oxides and ClF3 are used. The prepared compounds were characterized by single-crystal X-ray diffraction and Raman spectroscopy. The crystal structures of [ClOF2][MF6] (M=V, Ru, Os, Ir, P, Sb) are layer structures that are isotypic with the previously reported compound [ClOF2][AsF6], whereas for M=Nb and Ta, similar crystal structures with a different stacking variant of the layers are observed. Additionally, partial or full O/F disorder within the [ClOF2]+ cations of the Nb and Ta compounds occurs. In all compounds reported here, a trigonal pyramidal [ClOF2]+ cation with three additional Cl⋅⋅⋅F contacts to neighboring [MF6] anions is observed, resulting in a pseudo-octahedral coordination sphere around the Cl atom. The Cl−F and Cl−O bond lengths of the [ClOF2]+ cations seem to correlate with the effective ionic radii of the MV ions. Quantum-chemical, solid-state calculations well reproduce the experimental Raman spectra and show, as do quantum-chemical gas phase calculations, that the secondary Cl⋅⋅⋅F interactions are ionic in nature. However, both solid-state and gas-phase quantum-chemical calculations fail to reproduce the increases in the Cl−O bond lengths with increasing effective ionic radius of M in [MF6] and the Cl−O Raman shifts also do not generally follow this trend.  相似文献   

16.
The asymmetric unit of the title compound, dipotassium bis[hexaaquanickel(II)] tris(μ2‐methylenediphosphonato)tripalladium(II) hexahydrate, K2[Ni(H2O)6]2[Pd3{CH2(PO3)2}3]·6H2O, consists of half a {[Pd{CH2(PO3)2}]3}6− anion [one Pd atom (4e) and a methylene C atom (4e) occupy positions on a twofold axis] in a rare `handbell‐like' arrangement, with K+ and [Ni(H2O)6]2+ cations to form the neutral complex, completed by three solvent water molecules. The {[Pd{CH2(PO3)2}]3}6− units exhibit close Pd...Pd separations of 3.0469 (4) Å and are packed via intermolecular C—H...Pd hydrogen bonds. The [KO9] and [NiO6] units are assembled into sheets coplanar with (011) and stacked along the [100] direction. Within these sheets there are [K4Ni4O8] and [K2Ni2O4] loops. Successive alternation of the sheets and [Pd{CH2(PO3)2}]3 units parallel to [001] produces the three‐dimensional packing, which is also supported by a dense network of hydrogen bonds involving the solvent water molecules.  相似文献   

17.
The title compound represents a new structure type, in which distorted VO6 octa­hedra are bridged by iodate groups to form infinite two‐dimensional [VO2(IO3)2] layers that are separated by octa­hedrally coordinated Li+ cations.  相似文献   

18.
By slow evaporation of solutions containing Ln(ClO4)3 (Ln = Sm, Gd), H5IO6 and an excess of HClO4, crystals of the title compounds could be obtained. Their structures were determined by single‐crystal X‐ray diffraction. The compounds crystallize in the monoclinic crystal system, space group P21/c. They contain Ln3+ ions, which are coordinated by [H2I2O10]4— anions forming two‐dimensional, cationic networks. These are separated by perchlorate ions, forming a layered structure.  相似文献   

19.
Pb2(Hg3O4)(CrO4) consists of [CrO4]2− tetra­hedra, linear O—Hg—O dumbbells and divalent Pb atoms in [3+5]‐coordination. The HgO2 dumbbells are condensed into [Hg3O4]2− units and can be regarded as a section of the HgO structure. The [Hg3O4]2− complex anions are connected by inter­stitial Pb2+ ions, while the [CrO4]2− tetra­hedra are isolated.  相似文献   

20.
A new borate, potassium barium magnesium borate fluoride, KBa7Mg2B14O28F5, with a nominal 7:1 composition of BaB2O4 to KMg2F5, has been found during the growth of BaMgBO3F crystals with a KF flux. It crystallized in the space group C2/c and is composed of isolated heptaborate [B7O14]7− groups and double perovskite [Mg2O6F5]13− units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号