首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Treatment of Pd(PPh3)4 with 2‐bromo‐3‐hydroxypyridine [C5H3N(OH)Br] and 3‐amino‐2‐bromopyridine [C5H3N(NH2)Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C5H3N(OH)}(Br)], 2 and [Pd(PPh3)21‐C5H3N(NH2)}(Br)], 3 , by substituting two triphenylphosphine ligands, respectively. In dichloromethane solution of complexes 2 and 3 at ambient temperature for 3 days, it undergo displacement of the triphenylphosphine ligand to form the dipalladium complexes [Pd(PPh3)Br]2{μ,η2‐C5H3N(OH)}2, 4 and [Pd(PPh3)Br]2{μ,η2‐C5H3N(NH2)}2, 5 , in which the two 3‐hydroxypyridine and 3‐aminopyridine ligands coordinated through carbon to one metal center and bridging the other metal through nitrogen atom, respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses.  相似文献   

2.
Monophosphine‐o‐carborane has four competitive coordination modes when it coordinates to metal centers. To explore the structural transitions driven by these competitive coordination modes, a series of monophosphine‐o‐carborane Ir,Rh complexes were synthesized and characterized. [Cp*M(Cl)2{1‐(PPh2)‐1,2‐C2B10H11}] (M=Ir ( 1 a ), Rh ( 1 b ); Cp*=η5‐C5Me5), [Cp*Ir(H){7‐(PPh2)‐7,8‐C2B9H11}] ( 2 a ), and [1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 3 a ), Rh ( 3 b )) can be all prepared directly by the reaction of 1‐(PPh2)‐1,2‐C2B10H11 with dimeric complexes [(Cp*MCl2)2] (M=Ir, Rh) under different conditions. Compound 3 b was treated with AgOTf (OTf=CF3SO3?) to afford the tetranuclear metallacarborane [Ag2(thf)2(OTf)2{1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐RhC2B9H10}2] ( 4 b ). The arylphosphine group in 3 a and 3 b was functionalized by elemental sulfur (1 equiv) in the presence of Et3N to afford [1‐{(S)PPh2}‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 5 a ), Rh ( 5 b )). Additionally, the 1‐(PPh2)‐1,2‐C2B10H11 ligand was functionalized by elemental sulfur (2 equiv) and then treated with [(Cp*IrCl2)2], thus resulting in two 16‐electron complexes [Cp*Ir(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H9)] ( 6 a ) and [Cp*Ir(7‐{(S)PPh2}‐8‐S‐9‐OCH3‐7,8‐C2B9H9)] ( 7 a ). Compound 6 a further reacted with nBuPPh2, thereby leading to 18‐electron complex [Cp*Ir(nBuPPh2)(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H10)] ( 8 a ). The influences of other factors on structural transitions or the formation of targeted compounds, including reaction temperature and solvent, were also explored.  相似文献   

3.
Treatment of Pd(PPh3)4 with 2‐bromo‐4‐methylpyridine, C5H3N(CH3)Br, in dichloromethane at ?20 °C causes the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C5H3N(CH3)}(Br)], 2 , by substituting two triphenylphosphine ligands. In a dichloromethane solution of complex 2 at room temperature for 3 h, it undergoes displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐C5H3N(CH3)}2, 3 , in which the two 4‐methylpyridine ligands coordinated through carbon to one metal center and bridging the other metal through the nitrogen atom. Complexes 2 and 3 are characterized by X‐ray diffraction analyses.  相似文献   

4.
The new unsymmetrical phosphonium salts [Ph2PCH2PPh2CH2C(O)C6H4R]Br (R= m ‐Br ( S 1 ) and p ‐CN ( S 2 )) were synthesized in the reaction of 1,1‐bis(diphenylphosphino)methane (dppm) and BrCH2C(O)C6H4R (R= m ‐Br and p ‐CN) ketones, respectively. Further treatment with NEt3 gave the α‐keto stabilized phosphorus ylides Ph2PCH2PPh2C(H)C(O)C6H4R (R= m ‐Br ( Y 1 ) and p ‐CN ( Y 2 )). These ligands were reacted with [MCl2(cod)] (M= Pd and Pt; cod= 1,5‐cyclooctadiene) to give the pallada‐ and platinacycle complexes [MCl2(Ph2PCH2PPh2C(H)C(O)C6H4R)] (M= Pd, R= m ‐Br ( 3 ); R= p ‐CN ( 4 ) and M= Pt, R= m ‐Br ( 5 ); R= p ‐CN ( 6 )). Cyclic voltammetry, elemental analysis, IR and NMR (1H, 13C and 31P) spectroscopic methods were used for characterization of the obtained compounds. Further, the structure of complexes 3 and 4 were characterized crystallographically. Palladacycles 3 and 4 were proved to be excellent catalysts for the Suzuki‐Miyaura coupling reactions of various aryl chlorides and arylboronic acids in mixed DMF/H2O media. Also, the bonding situations between two interacted fragments [PtCl2] and Y 1 and Y 2 ligands in platinacycles 5 and 6 were investigated based on DFT method by using NBO, EDA and ETS‐NOCV analysis.  相似文献   

5.
Halfsandwich‐Type Complexes of Iridium with Tetramethylcyclopentadienyl as Ligand The iridium(I) complexes [(η5‐C5HMe4)Ir(C2H4)2] ( 2 ) and [(η5‐C5HMe4)Ir(CO)2] ( 4 ), which have been prepared from [IrCl(C2H4)2]2 or [IrCl(CO)3]n and LiC5HMe4, react with tosylchloride as well as with X2 (X = Cl, Br, I) by oxidative addition to yield the corresponding iridium(III) compounds. Treating the complexes [(η5‐C5HMe4)IrX2]n ( 7 — 9 ) with CO or PR3 leads to a cleavage of the halide bridges and to the formation of the mononuclear products [(η5‐C5HMe4)IrX2(CO)] ( 10 , 11 ) and [(η5‐C5HMe4)IrX2(PR3)] ( 12 — 20 ), respectively. The molecular structure of [(η5‐C5HMe4)IrBr2(PiPr3)] ( 18 ) was determined crystallographically. The reactions of 8 (X = Br) and 9 (X = I) with Ph2P(CH2)nPPh2 (n = 1 or 2) afford the bridged compounds [{(η5‐C5HMe4)IrX2}2{μ‐Ph2P(CH2)nPPh2}] ( 21—23 ). The dihalide complexes [(η5‐C5HMe4)IrI2(PPh3)] ( 16 ) and [(η5‐C5HMe4)IrX2(PiPr3)] ( 17—19 ) react with hydride sources to give the dihydrido‐ and monohydrido derivatives [(η5‐C5HMe4)IrH2(PPh3)] ( 24 ) and [(η5‐C5HMe4)IrH(X)(PiPr3)] ( 25—27 ). The related dimethyl and monomethyl compounds [(η5‐C5HMe4)Ir(CH3)2(PiPr3)] ( 28 ) and [(η5‐C5HMe4)IrCH3(I)(PiPr3)] ( 29 ) have been obtained from the dihalide precursors 18 or 19 and CH3MgI in the molar ratio of 1:2 or 1:1, respectively.  相似文献   

6.
Treatment of Pd(PPh3)4 with 5‐bromo‐pyrimidine [C4H3N2Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C4H3N2)(Br)], 1 , by substituting two triphenylphosphine ligands. In acetonitrile solution of 1 in refluxing temperature for 1 day, it do not undergo displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐(η1‐C4H3N2)}2, or bromide ligand to form chelating pyrimidine complex [Pd(PPh3)22‐C4H3N2)]Br. Complex 1 reacted with bidentate ligand, NH4S2CNC4H8, and tridentate ligand, KTp {Tp = tris(pyrazoyl‐1‐yl)borate}, to obtain the η2‐dithiocarbamate η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐S2CNC4H8)], 4 and η2‐Tp η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐Tp)], 5 , respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses.  相似文献   

7.
The interaction of the PPh3-stabilized iridium trihydrido complex H3Ir(PPh3)3 with fullerene C60 under thermal and photochemical excitation was studied under anaerobic conditions. Heating (100 °C) or photolysis by the visible light of the H3Ir(PPh3)3-C60 650 nm, which are characteristic of the ·2-coordinated C60 in several fullerene-containing metal complexes. The kinetic behavior of the H3Ir(PPh3)3)-C60 system in benzonitrile was investigated using a Nd3+-YAG laser (λ=532 nm). The quenching rate constant determined from the dependence of the effective first-order quenching constant of C60(T) on the concentration of H3Ir(PPh3)3 is equal to 1.1·109 L mol−1 s−1. The quenching of C60(T) by the iridium hydridophosphine complex follows the reductive mechanism to form a C60 monoanion. The ESR signal with g=2.000 and ΔH=0.17 mT (at room temperature) and characteristic absorption bands in the near-IR region at 940, 1004, and 1076 nm support the formation of the C60 monoanion during the interaction of the triplet-excited C60 with H3Ir(PPh3)3. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2145–2148, December, 1997.  相似文献   

8.
The coordinatively unsaturated 1-iridaindene, Ir[C8H5(Ph-3)]Cl(PPh3)2 has a labile chloride ligand and is easily converted to the corresponding iodide, Ir[C8H5(Ph-3)]I(PPh3)2 (1) by reaction with NaI. When Ir[C8H5(Ph-3)]I(PPh3)2 (1) is treated with methyl propiolate a reactive five-coordinate complex with both a diphenylvinyl ligand from ring-opening of the 1-iridaindene, and a 3-methoxy-3-oxoprop-1-ynyl ligand from deprotonation of methyl propiolate, is first produced. Reaction of this complex with aqueous HCl generates the 2-iridafuran, Ir[OC3H(CHCPh2-3)(OMe-5)]ClI(PPh3)2 (2) probably from initial protonation at the β-carbon of the 3-methoxy-3-oxoprop-1-ynyl ligand to form a vinylidene ligand and subsequent migration of the diphenylvinyl ligand to the α-carbon of this ligand accompanied by oxygen coordination to iridium. Similar treatment of 1 with methyl propiolate followed by aqueous HI gives the corresponding complex, Ir[OC3H(CHCPh2-3)(OMe-5)]I2(PPh3)2 (3). The X-ray crystal structures of 2 and 3 together with NMR spectroscopic data confirm the 2-metallafuran structures of these complexes.  相似文献   

9.
Five new copper chalcogenide cluster molecules, [Cu4(S–C6H4–Br)4(PPh3)4] ( 1 ), [Cu22Se6(S–C6H4–Br)10(PPh3)8] ( 2 ), [Cu28Se6(S–C6H4–Br)16(PPh3)8] ( 3 ), [Cu47Se10(S–C6H4–Br)21(OAc)6(PPh3)8] ( 4 ) and [Cu8(S–C6H4–Br)6(S2C–NMe2)2(PPh3)4] ( 5 ) have been synthesized and characterized by single‐crystal X‐ray structure analysis. Compounds 1 – 4 were prepared from the reaction of CuOAc, p‐Br–C6H4–SSiMe3 and Se(SiMe3)2 in the presence of PPh3. In a further reaction of 1 with iPrMgCl and (Me2N–CS2)2 cluster 5 was crystallized.  相似文献   

10.
A series of palladium complexes ( 2a–2g ) ( 2a : [6‐tBu‐2‐PPh2‐C6H3O]PdMe(Py); 2b : [6‐C6F5–2‐PPh2‐C6H3O]PdMe(Py); 2c : [6‐tBu‐2‐PPhtBu‐C6H3O]PdMe(Py); 2d : [2‐PPhtBu‐C6H4O] PdMe(Py); 2e : [6‐SiMe3–2‐PPh2‐C6H3O]PdMe(Py); 2f : [2‐tBu‐6‐(Ph2P=O)‐C6H3O]PdMe(Py); 2g : [6‐SiMe3–2‐(Ph2P=O)‐C6H3S]PdMe(Py)) bearing phosphine (oxide)‐(thio) phenolate ligand have been efficiently synthesized and characterized. The solid‐state structures of complexes 2d , 2f and 2g have been further confirmed by single‐crystal X‐ray diffraction, which revealed a square‐planar geometry of palladium center. In the presence of B(C6F5)3, these complexes can be used as catalysts to polymerize norbornene (NB) with relatively high yields, producing vinyl‐addition polymers. Interestingly, 2a /B(C6F5)3 system catalyzed the polymerization of NB in living polymerization manner at high temperature (polydispersity index 1.07, Mn up to 1.5 × 104). The co‐polymerization of NB and polar monomers was also studied using catalysts 2a and 2f . All the obtained co‐polymers could dissolve in common solvent.  相似文献   

11.
Chiral Half‐sandwich Pentamethylcyclopentadienyl Rhodium(III) and Iridium(III) Complexes with Schiff Bases from Salicylaldehyde and α‐Amino Acid Esters [1] A series of diastereoisomeric half‐sandwich complexes with Schiff bases from salicylaldehyde and L‐α‐amino acid esters including chiral metal atoms, [(η5‐C5H5)(Cl)M(N,O‐Schiff base)], has been obtained from chloro bridged complexes [(η5‐C5Me5)(Cl)M(μ‐Cl)]2 (M = Rh, Ir). Abstraction of chloride from these complexes with Ag[BF4] or Ag[SO3CF3] affords the highly sensitive compounds [(η5‐C5Me5)M(N,O‐Schiff base]+X? (M = Rh, Ir; X = BF4, CF3SO3) to which PPh3 can be added under formation of [(η5‐C5Me5)M(PPh3)(N,O‐Schiff base)]+X?. The diastereoisomeric ratio of the complexes ( 1 ‐ 7 and 11 ‐ 12 ) has been determined from NMR spectra.  相似文献   

12.
The new symmetrical diphosphonium salt [Ph2P(CH2)2PPh2(CH2C(O)C6H4Br)2] Br2 ( S ) was synthesized in the reaction of 1,2‐bis (diphenylphosphino) ethane (dppe) and related ketone. Further treatment with NEt3 gave the symmetrical α‐keto stabilized diphosphine ylide [Ph2P(CH2)2PPh2(CHC(O)C6H4Br)2] ( Y 1 ). The unsymmetrical α‐keto stabilized diphosphine ylide [Ph2P(CH2)2PPh2(CHC(O)C6H4Br)] ( Y 2 ) was synthesized in the reaction of diphosphine in 1:1 ratio with 2.3′‐dibromoacetophenone, then treatment with NEt3. The reaction of dibromo (1,5‐cyclooctadiene)palladium (II), [PdBr2(COD)] with this ligand ( Y 1 ) in equimolar ratio gave the new C,C‐chelated [PdBr2(Ph2P(CH2)2PPh2(C(H)C(O)C6H4Br)2)] ( 1 ) and with unsymmetrical phosphorus ylide [Ph2P(CH2)2PPh2C(H)C(O)C6H4Br] ( Y 2 ) gave the new P, C‐chelated palladacycle complex [PdBr2(Ph2P(CH2)2PPh2C(H)C(O)Br)] ( 2 ). These compounds were characterized successfully by FT‐IR, NMR (1H, 13C and 31P) spectroscopic methods and the crystal structure of Y 1 and 2 were elucidated by single crystal X‐ray diffraction. The results indicated that the complex 1 was C, C‐chelated whereas complex 2 was P, C‐chelated. These air/moisture stable complexes were employed as efficient catalysts for the Mizoroki‐Heck cross‐coupling reaction of several aryl chlorides, and the Taguchi method was used to optimize the yield of Mizoroki‐Heck coupling. The optimum condition was found to be as followed: base; K2CO3, solvent; DMF and loading of catalyst; 0.005 mmol.  相似文献   

13.
《化学:亚洲杂志》2017,12(23):3027-3038
Reactions of the ruthenium complex [Ru]Cl ([Ru]=Cp(PPh3)2Ru; Cp=η5‐C5H5) with several aryl propargyl acetates, each with an ortho ‐substituted chain of various length containing an epoxide on the aromatic ring and with or without methyl substitutents on the epoxide ring, bring about novel cyclizations. The cyclization reactions of HC≡CCH(OAc)(C6H4)CH2(RC2H2O) (R=H, 6 a ; R=CH3, 6 b , where RC2H2O is an epoxide ring) in MeOH give the vinylidene complexes 5 a – b , respectively, each with the Cβ integrated into a tetrahydro‐5H ‐benzo[7]annulen‐6‐ol ring. A C−C bond formation takes place between the propargyl acetate and the less substituted carbon of the epoxide ring. Further cyclizations of 5 a – b induced by HBF4 give the corresponding vinylidene complexes 8 a – b each with a new 8‐oxabicyclo‐[3.2.1]octane ring by removal of a methanol molecule in high yield. For similar aryl propargyl acetates with a shorter epoxide chain, the cyclization gives a mixture of a vinylidene complex with a tetrahydronaphthalen‐1‐ol ring and a carbene complex with a tricyclic indeno‐furan ring. For the cyclization of 18 , with a longer epoxide chain, opening of the epoxide is required to afford the vicinal bromohydrin 22 , then tandem cyclization occurs in one pot. Products are characterized by spectroscopic methods as well as by XRD analysis.  相似文献   

14.
The title compound, [Fe(C5H5)(C21H16NO)], was synthesized from the coupling reaction of anthracene‐9‐carboxyl­ic acid and ferrocenyl­methyl­amine. The ferrocenyl (Fc) group and the anthracene ring system both lie approximately orthogonal to the amide moiety. An amide–amide interaction (along the a axis) is the principal interaction [N⋯O = 2.910 (2) Å]. A C—H⋯π(arene) interaction [C⋯centroid = 3.573 (2) Å] and a C—H⋯O interaction [C⋯O = 3.275 (3) Å] complete the hydrogen bonding; two short (Fc)C⋯C(anthracene) contacts are also present.  相似文献   

15.
The mol­ecules of 2‐benzoyl‐1‐benzofuran, C15H10O2, (I), inter­act through double C—H⋯O hydrogen bonds, forming dimers that are further linked by C—H⋯O, C—H⋯π and π–π inter­actions, resulting in a three‐dimensional supramolecular network. The dihedral angle between the benzo­yl and benzofuran fragments in (I) is 46.15 (3)°. The mol­ecules of bis­(5‐bromo‐1‐benzofuran‐2‐yl) ketone, C17H8Br2O3, (II), exhibit C2 symmetry, with the carbon­yl group (C=O) lying along the twofold rotation axis, and are linked by a combination of C—H⋯O and C—H⋯π inter­actions and Br⋯Br contacts to form sheets. The stability of the mol­ecular packing in 3‐mesit­yl‐3‐methyl­cyclo­but­yl 3‐methyl­naphtho[1,2‐b]furan‐2‐yl ketone, C28H28O2, (III), arises from C—H⋯π and π–π stacking inter­actions. The fused naphthofuran moiety in (III) is essentially planar and makes a dihedral angle of 81.61 (3)° with the mean plane of the trimethyl­benzene ring.  相似文献   

16.
The hydrogen abstraction/acetylene addition (HACA) mechanism has long been viewed as a key route to aromatic ring growth of polycyclic aromatic hydrocarbons (PAHs) in combustion systems. However, doubt has been drawn on the ubiquity of the mechanism by recent electronic structure calculations which predict that the HACA mechanism starting from the naphthyl radical preferentially forms acenaphthylene, thereby blocking cyclization to a third six‐membered ring. Here, by probing the products formed in the reaction of 1‐ and 2‐naphthyl radicals in excess acetylene under combustion‐like conditions with the help of photoionization mass spectrometry, we provide experimental evidence that this reaction produces 1‐ and 2‐ethynylnaphthalenes (C12H8), acenaphthylene (C12H8) and diethynylnaphthalenes (C14H8). Importantly, neither phenanthrene nor anthracene (C14H10) was found, which indicates that the HACA mechanism does not lead to cyclization of the third aromatic ring as expected but rather undergoes ethynyl substitution reactions instead.  相似文献   

17.
Si?F bond cleavage of fluoro‐silanes was achieved by transition‐metal complexes under mild and neutral conditions. The Iridium‐hydride complex [Ir(H)(CO)(PPh3)3] was found to readily break the Si?F bond of the diphosphine‐ difluorosilane {(o‐Ph2P)C6H4}2Si(F)2 to afford a silyl complex [{[o‐(iPh2P)C6H4]2(F)Si}Ir(CO)(PPh3)] and HF. Density functional theory calculations disclose a reaction mechanism in which a hypervalent silicon species with a dative Ir→Si interaction plays a crucial role. The Ir→Si interaction changes the character of the H on the Ir from hydridic to protic, and makes the F on Si more anionic, leading to the formation of Hδ+???Fδ? interaction. Then the Si?F and Ir?H bonds are readily broken to afford the silyl complex and HF through σ‐bond metathesis. Furthermore, the analogous rhodium complex [Rh(H)(CO)(PPh3)3] was found to promote the cleavage of the Si?F bond of the triphosphine‐monofluorosilane {(o‐Ph2P)C6H4}3Si(F) even at ambient temperature.  相似文献   

18.
Three dinuclear copper(I) complexes, [Cu2(µ‐Cl)2(1,2‐(PPh2)2‐1,2‐C2B10H10)2]·2CH2Cl2 ( 1 ), [Cu2(µ‐Br)2(1,2‐(PPh2)2‐1,2‐C2B10H10)2]·2THF ( 2 ) and {Cu2(µ‐I)2[1,2‐(PPh2)2‐1,2‐C2B10H10]2} ( 3 ) have been synthesized by the reactions of CuX (X = Cl, Br and I) with the closo ligand 1,2‐(PPh2)2‐1,2‐C2B10H10. All these complexes were characterized by elemental analysis, FT‐IR, 1H and 13C NMR spectroscopy and X‐ray structure determination. Single crystal X‐ray structure determinations show that every complex contained di‐µ‐X‐bridged structure involving a crossed parallelogram plane formed by two Cu atoms and two X atoms (X = Cl, Br, I). The geometry at the Cu atom was a distorted tetrahedron, in which two positions were occupied by two P atoms of the PPh2 groups connected to the two C atoms of carborane (Cc), and the other two resulted from two X atoms which bridged the other Cu atom at the same time. To the best of our knowledge, this is the first example of copper(I) complexes with 1,2‐diphenylphosphino‐1,2‐dicarba‐closo‐dodecaborane as ligand characterized by X‐ray diffraction. The catalytic property of the complex 3 for the amination of iodobenzene with aniline was also investigated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A simple and effective two‐step approach to tricyclic pyrimidine‐fused benzazepines has been adapted to give the tetracyclic analogues. In (RS)‐8‐chloro‐6‐methyl‐1,2,6,7‐tetrahydropyrimido[5′,4′:6,7]azepino[3,2,1‐hi]indole, C15H14ClN3, (I), the five‐membered ring adopts an envelope conformation, as does the reduced pyridine ring in (RS)‐9‐chloro‐7‐methyl‐2,3,7,8‐tetrahydro‐1H‐pyrimido[5′,4′:6,7]azepino[3,2,1‐ij]quinoline, C16H16ClN3, (II). However, the seven‐membered rings in (I) and (II) adopt very different conformations, with the result that the methyl substituent occupies a quasi‐axial site in (I) but a quasi‐equatorial site in (II). The molecules of (I) are linked by C—H...N hydrogen bonds to form C(5) chains and inversion‐related pairs of chains are linked by a π–π stacking interaction. A combination of a C—H...π hydrogen bond and two C—Cl...π interactions links the molecules of (II) into complex sheets. Comparisons are made with some similar fused heterocyclic compounds.  相似文献   

20.
Alkyl and Aryl Complexes of Iridium and Rhodium. XIX. Reaction of Carboxylic Acids with Selected Organo Compounds of Ir(I) and Rh(I): Formation of Arylhydrido, Carboxylatohydrido, and Carboxylato Derivatives cis-Arylhydridoiridium(III) complexes IrH(Ar)(O2CR)(CO)(PPh3)2 (R = Me: Ar = C6H5, 4-MeC6H4; R = Et: Ar = 4-MeC6H4, 2,4-Me2C6H3) could be prepared by oxidative addition of carboxylic acids to aryliridium(I) compounds Ir(Ar)(CO)(PPh3)2. Reaction of aliphatic carboxylic acids with alkyliridium(I) derivatives Ir(Alk)(CO)(PPh3)2 and Ir(Alk)[PhP(CH2CH2CH2PPh2)2] (Alk = CH2CMe3, CH2SiMe3) lead to dicarboxylatoiridium(III) hydrides IrH(O2CR)2(CO)(PPh3)2 (R = Me, Et, i-Pr) and IrH(O2CR)2[PhP(CH2CH2CH2PPh2)2] (R = Me, Et). Ir(4-MeC6H4CO2)(CO)(PPh3)2 was obtained from Ir(CH2SiMe3)(CO)(PPh3)2 and 4-MeC6H4CO2H. Interaction of organorhodium complexes Rh(R′)(CO)(PPh3)2 (R′ = CH2SiMe3, 4-MeC6H4) and Rh(R′)[PhP(CH2CH2CH2PPh2)2] (R′ = CH2CMe3, 4-MeC6H4) with aliphatic and aromatic carboxylic acids yielded carboxylatorhodium(I) compounds Rh(O2CR)(CO)(PPh3)2 (R = Me, t-Bu, 4-MeC6H4) and Rh(O2CR)[PhP(CH2CH2CH2PPh2)2] (R = Me, 4-MeC6H4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号