首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Completely stereoregular polycarbonate synthesis was achieved with the use of unsymmetric multichiral cobalt‐based complexes bearing a derived chiral BINOL and an appended 1,5,7‐triabicyclo[4.4.0] dec‐5‐ene as catalyst for the copolymerization of CO2 and aliphatic terminal epoxides at mild conditions. The (S,S,S)‐Co(III) complex 1c with sterically hindered substituent group is more stereoregular catalyst for the copolymerization of CO2 and racemic propylene oxide to afford a perfectly regioregular poly(propylene carbonate) (PPC), with >99% head‐to‐tail linkages, >99% carbonate linkages, and a Krel of 24.4 for the enchainment of (R)‐epoxide over (S)‐epoxide. The isotactic PPC exhibits an enhanced glass transition temperature of 47 °C, which is 10–12 °C higher than that of the corresponding irregular polycarbonate. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

2.
To combine temperature responsivity and degradability, novel alternating copolymers with polyester backbone and oligo(ethylene glycol) side chain were designed and prepared by alternating ring‐opening copolymerization of succinic anhydride (SA) and functional epoxide monomer(s). The epoxide monomer containing one ethylene glycol unit, 2‐((2‐methoxyethoxy)methyl)oxirane (MEMO), has displayed similar copolymerization activity to that containing two ethylene glycol units, 2‐((2‐(2‐methoxyethoxy)ethoxy)methyl)oxirane (ME2MO), when copolymerized with SA. This feature led to the formation of alternating copolymers with statistical random distribution of MEMO/ME2MO units along the backbone when mixed MEMO/ME2MO comonomers were fed. These polyesters possess degradability and quantitatively controlled lower critical solution temperature (LCST; 18–50 °C) and Tg (?40 to ?31 °C) both in linear relations with MEMO/ME2MO feed ratio. Fine control of LCST near body temperature is thus realized for the reported degradable and thermoresponsive polyesters, which have promising applications in biomedical fields. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
A novel bifunctional monomer, namely maleimide glycidyl ether (MalGE), prepared in a four‐step reaction sequence is introduced. This monomer allows for selective (co)polymerization of the epoxide group via cationic ring‐opening polymerization, preserving the maleimide functionality. On the other hand, the maleimide functionality can be copolymerized via radical techniques, preserving the epoxide moiety. Cationic ring‐opening multibranching copolymerization of MalGE with glycidol was performed, and a MalGE content of up to 24 mol% could be incorporated into the hyperbranched polymer backbone (Mn = 1000–3000 g mol−1). Preservation of the maleimide functionality during cationic copolymerization was verified via NMR spectroscopy. Subsequently, the maleimide moiety was radically crosslinked to generate hydrogels and additionally employed to perform Diels‐Alder (DA) “click” reactions with (functional) dienes after the polymerization process. Radical copolymerization of MalGE with styrene (Mn = 5000–9000 g mol−1) enabled the synthesis of a styrene copolymer with epoxide functionalities that are useful for versatile crosslinking and grafting reactions.

  相似文献   


4.
Cationic ring‐opening copolymerizations of various cyclic ether compounds with volume expanding monomers bearing norbornene backbones [norbornene‐spiro orthocarbonate (N‐SOC) and norbornene‐cyclic carbonate (N‐CC)] were carried out in the presence of a thermally latent initiator 1 . The 10% weight loss decomposition temperatures (Td10) and the volume changes on the copolymerizations were measured for these resultant products. In the comparison between copolymerizations of bifunctional epoxide 2 with N‐SOC and with N‐CC, it was found that N‐CC served as a more useful volume controllable comonomer than N‐SOC. The copolymerizations with N‐CC yielded the products with a decrease in the volume change (volume shrinkage) and with an increase in the monomer feed ratio of N‐CC; Td10 was relatively similar to the homopolymer of epoxide 2 and was observed except when the proportion of N‐CC was more than 20% in the monomer feed ratio of N‐CC. In contrast, similar copolymerizations with N‐SOC did not exhibit such tendencies, probably because of the low efficiency of the copolymerization derived from the low miscibility of N‐SOC for the epoxide. The other copolymerization systems of other bi‐ and monocyclic ether compounds ( 3 – 6 and phenyl glycidyl ether) with N‐CC also indicated an almost similar tendency toward that of the copolymerization with epoxide 2 . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5113–5120, 2004  相似文献   

5.
As an extension of our work on the elucidation of the mechanism and control of 3‐dimensional network formation in the free‐radical crosslinking polymerization and copolymerization of multivinyl compounds with the aim to molecularly design vinyl‐type network polymers, novel amphiphilic polymers were prepared as crosslinked polymer precursors. Thus, benzyl methacrylate, a nonpolar monomer, was copolymerized radically with 5 mol % of triicosaethylene glycol dimethacrylate [CH2C(CH3)CO(OCH2CH2)23OCOC(CH3)CH2], a polar monomer, in the presence of lauryl mercaptan as a chain transfer agent. The resulting prepolymers (i.e., vinyl‐type network‐polymer precursors or amphiphilic polymers) were characterized mainly by viscometry using t‐butylbenzene (t‐BB) and a t‐BB/MeOH (80/20) mixture as solvents. The viscosities in the t‐BB/MeOH (80/20) mixture were quite high compared with those in t‐BB, and completely reversed concentration dependencies were observed in the solvents. These are discussed by considering the difference in conformation and the shrinkage of polar, flexible polyoxyethylene units or the entanglement of nonpolar, rigid primary chains. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4396–4402, 2000  相似文献   

6.
Functional aliphatic polycarbonate was synthesized by copolymerization of carbon dioxide and allyl glycidyl ether in the presence of a catalyst system based on ZnEt2 and pyrogallol at a molar ratio of 2 : 1. The polycarbonate obtained was oxidized with m‐chloroperbenzoic acid to give poly(epoxycarbonate). These polymers were degraded in an aqueous buffer of pH 7.4 at 37°C. Hydrolytic degradation was monitored by determination of the weight loss.  相似文献   

7.
A novel branched polycarbonate with a hydroxyl group at the chain end was synthesized by the copolymerization of glycidol with carbon dioxide (CO2). The copolymerization was carried out with 5 mol % of an alkali metal halide or quaternary ammonium salt as a catalyst under atmospheric CO2. The obtained poly(glycidol‐co‐carbon dioxide) was O‐benzoylated and O‐silylated, and the corresponding polymers were analyzed with IR, size exclusion chromatography, 13C NMR, and 29Si NMR. The IR spectroscopy analysis of the O‐benzoylated polymer revealed that the maximum incorporation degree of the carbonate group was 90% (i.e., the CO2/glycidol composition ratio was 0.9:1.0). The incorporation of CO2 as a carbonate unit was also confirmed by the treatment of this polymer with n‐butylamine, which caused the aminolysis of the carbonate and led to degraded products. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2506–2511, 2004  相似文献   

8.
A copolymerization of 10‐methyl‐2H,8H‐benzo‐[1,2‐b:5,4‐b′]bipyran‐2,8‐dione ( 1 ) and glycidyl phenyl ether (GPE) was studied. 1 was a bislactone designed as a bifunctional analogue of 3,4‐dihydrocoumarin (DHCM), of which anionic 1:1 alternating copolymerization with GPE has been reported by us, previously. This alternating nature was inherited by the present copolymerization of 1 and GPE, leading to an intriguing copolymerization behavior in contrast to the ordinary statistical copolymerizations of monofunctional monomers and bifunctional monomers usually controlled by the proportional dependence of the crosslinking density on the monomer feed ratio: (1) When the feed ratio [GPE]0/[ 1 ]0 was 1, the two monomers underwent the 1:1 alternating copolymerization. In this case, 1 behaved as a monofunctional monomer, that is, only one of the two lactones in 1 participated in the copolymerization allowing the other lactone moiety to be introduced into the side chain almost quantitatively. (2) Increasing the feed ratio [GPE]0/[1]0 to larger than 4 allowed almost all of the lactone moieties to participate in the copolymerization system to give the corresponding networked polymers efficiently. The compositions of the copolymers [GPE unit]/[ 1 ‐derived acyclic ester unit] were always biased to smaller values than the feed ratios [GPE]0/[lactone moiety in 1 ]0 by the intrinsic 1:1 alternating nature of the copolymerization. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3662–3668, 2009  相似文献   

9.
Dendritic polyarylether 2‐bromoisobutyrates of different generations (Gn‐Br, n = 1–3) as macroinitiators for the atom transfer radical copolymerization of N‐hexylmaleimide and styrene in an ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate, were investigated. The copolymerization carried out in the ionic liquid with CuBr/pentamethyldiethylenetriamine as a catalyst at room temperature afforded polymers with well‐defined molecular weights and low polydispersities (1.18 < Mw/Mn < 1.36, where Mw is the weight‐average molecular weight and Mn is the number‐average molecular weight), and the resultant copolymers possessed an alternating structure over a wide range of monomer feeds (f1 = 0.3–0.8). Meanwhile, the copolymerization was also conducted in anisole at 110 °C under similar conditions so that the effect of the reaction media on the polymerization could be evaluated. The monomer reactivity ratios showed that the tendency to form alternating copolymers for the two monomers was stronger in ionic liquids than in anisole. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3360–3366, 2002  相似文献   

10.
The use of zinc glutarate (ZnGA) as a heterogeneous catalyst for the copolymerization of epichlorohydrin, an epoxide with an electron‐withdrawing substituent, and CO2 is reported. This catalyst shows the highest selectivity (98%) for polycarbonate over the cyclic carbonate in epichlorohydrin/CO2 copolymerization under mild conditions. The (epichlorohydrin‐co‐CO2) polymer exhibits a high glass transition temperature (Tg), 44 °C, which is the maximum Tg value obtained for the (epichlorohydrin‐co‐CO2) polymer to date.

  相似文献   


11.
Two novel types of polyfluorene copolymers containing siloxane linkages or distilbene moieties on their main‐chains were synthesized by Ni(0)‐mediated Yamamoto coupling polymerization. These polymers, designated P2Silo05, P2Silo15, PF‐P02, and PF‐P05 were prepared by copolymerization between 2,7‐dibromo‐9,9′‐dihexylfluorene and bis(bromobenzene)‐terminated disiloxane monomer (for P2Silo05 and P2Silo15) or dibromodistilbene monomer (for PF‐P02 and PF‐P05). All of the polymers were highly soluble in common organic solvents such as chloroform, toluene, and p‐xylene. The glass transition temperatures of the polymers were between 92 and 113 °C, and the decomposition temperatures for a 5% weight loss (Td) were above 420 °C for all of the polymers, demonstrating high thermal stability. The molecular weight (Mw) of the polymers ranged from 4.2 × 104 to 8.8 × 104. The blue shift of the maximum in the UV‐visible absorption was greater in polymers with a higher molar percentage of siloxane linkages or distilbene moieties than in homo poly (dihexylfluorene) (PDHF). However, the photoluminescence spectra of the polymers were similar to those of PDHF in terms of the onsets and patterns. Single‐layer light‐emitting diodes were fabricated with a configuration of ITO/PEDOT:PSS/polymers/Ca/Al. The maximum electroluminescence emission wavelengths of the polymers were 425–450 nm, corresponding to pure blue light. The CIE co‐ordinates of the polyfluorenes containing siloxane linkages or distilbene moieties ranged from (0.21, 0.21) to (0.17, 0.10), indicating deeper blue light than that of PDHF {CIE co‐ordinates of (0.25, 0.29)}, with P2Silo15 giving the deepest blue‐light {CIE co‐ordinates of (0.17, 0.10)}. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1595–1608, 2009  相似文献   

12.
ABA triblock polyesters are synthesized using a commercially available chromium salen catalyst, in one pot, from monomer mixtures comprising epoxide, anhydride and lactone. The catalysis is highly selective and applies a single catalyst in two distinct pathways. It occurs first by epoxide/anhydride ring‐opening copolymerization and subsequently by lactone ring‐opening polymerization. It is used to produce various new ABA polyester polyols; these polyols can undergo post‐functionalization and chain‐extension reactions. The ability to use a commercial catalyst and switchable catalysis with monomer mixtures is expected to facilitate future explorations of new classes of block polymers.  相似文献   

13.
Here we describe an unprecedented synthetic approach to poly(styrene)‐supported chiral salen ligands by the free radical polymerization of an unsymmetrical styryl‐substituted salen monomer (H2salen=bis(salicylidene)ethylenediamine). The new method allows for the attachment of salen moieties to the polymer main chain in a flexible, pendant fashion, avoiding grafting reactions that often introduce ill‐defined species on the polymers. Moreover, the loading of the salen is controlled by the copolymerization of the styryl‐substituted salen monomer with styrene in different ratios. The polymeric salen ligands are metallated with cobalt(II ) acetate to afford the corresponding supported Co–salen complexes, which are used in the hydrolytic kinetic resolution of racemic epichlorohydrin, exhibiting high reactivity and enantioselectivity. Remarkably, the copolymer‐supported Co–salen complexes showed a better catalytic performance (>99 % ee, 54 % conversion, one hour) in comparison to the homopolymeric analogues and the small molecule Co–salen complex. The soluble poly(styrene)‐supported catalysts were recovered by precipitation after the catalytic reactions and were recycled three times to afford almost identical enantiomeric excesses as the first run, with slightly reduced reaction rates.  相似文献   

14.
Here we report the preparation of PEG‐based thermoresponsive hyperbranched polymers via a facile in situ reversible addition‐fragmentation chain transfer (RAFT) copolymerization using bis(thiobenzoyl) disulphide to form 2‐cyanoprop‐2‐yl dithiobenzoate in situ. This novel one‐pot in situ RAFT approach was studied firstly using methyl methacrylate (MMA) monomer, then was used to prepare thermoresponsive hyperbranched polymers by copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, Mn = 475), poly(propylene glycol) methacrylate (PPGMA, Mn = 375) and up to 30 % of ethylene glycol dimethacrylate (EGDMA) as the branching agent. The resultant PEGMEMA‐PPGMA‐EGDMA copolymers from in situ RAFT were characterized by Gel Permeation Chromatography (GPC) and 1H‐NMR analysis. The results confirmed the copolymers with multiple methacrylate groups and hyperbranched structure as well as RAFT functional residues. These water‐soluble copolymers with tailored compositions demonstrated tuneable lower critical solution temperature (LCST) from 22 °C to 32 °C. The phase transition temperature can be further altered by post functionalization via aminolysis of RAFT agent residues in polymer chains. Moreover, it was demonstrated by rheological studies and particle size measurements that these copolymers can form either micro‐ or macro photocrosslinked gels at suitable concentrations due to the presence of multiple methacrylate groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3751–3761  相似文献   

15.
4‐Methacryloyl‐2,2,6,6‐tetramethyl‐piperidine (MTMP) was applied as reactive hindered amine piperidine. Photo‐induced copolymerization of methyl methacrylate (MMA, M1) with MTMP (M2) was carried out in benzene solution at ambient temperature. The reactivity ratios for these monomers were measured by running a series of reactions at various feed ratios of initial monomers, and the monomer incorporation into copolymer was determined using 1H NMR. Reactivity ratios of the MMA/MTMP system were measured to be r1 = 0.37 and r2 = 1.14 from extended Kelen‐Tüdos method. The results show that monomer MTMP prefers homopolymerization to copolymerization in the system, whereas monomer MMA prefers copolymerization to homopolymerization. Sequence structures of the MMA/MTMP copolymers were characterized using 1H NMR. The results show that the sequence structure for the main chain of the MMA/MTMP copolymers is mainly composed of a syndiotactic configuration, only with a little heterotactic configuration. Three kinds of the sequences of rr, rr′, and lr′ in the syndiotactic configuration are found. The sequence‐length distribution in the MMA/MTMP copolymers is also obtained. For f1 = 0.2, the monomer unit of MMA is mostly separated by MTMP units, and for f1 = 0.6, the alternating tendency prevails and a large number of mono‐sequences are formed; further up to f1 = 0.8, the monomer unit of MTMP with the sequence of one unit is interspersed among the chain of MMA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Initiators for continuous activator regeneration atom transfer radical polymerization (ICAR ATRP) of an epoxide‐containing monomer, glycidyl methacrylate (GMA), was successfully carried out using low concentration of catalyst (ca. 105 ppm) at 60 °C in anisole. The copper complex of tris(2‐pyridylmethyl)amine was used as the catalyst, diethyl 2‐bromo‐2‐methylmalonate as the initiator, and 2,2′‐azobisisobutyronitrile as the reducing agent. When moderate degrees of polymerization were targeted (up to 200), special purification of the monomer, other than removal of the polymerization inhibitor, was not required to achieve good control. To synthesize well‐defined polymers with higher degrees of polymerization (600), it was essential to use very pure monomer, and polymers of molecular weights exceeding 50,000 g mol?1 and Mw/Mn = 1.10 were prepared. The developed procedures were used to chain‐extend bromine‐terminated poly(methyl methacrylate) macroinitiator prepared by activators regenerated by electron transfer (ARGET) ATRP. The SnII‐mediated ARGET ATRP technique was not suitable for the polymerization of GMA and resulted in polymers with multimodal molecular weight distributions. This was due to the occurrence of epoxide ring‐opening reactions, catalyzed by SnII and SnIV. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Atom transfer radical copolymerization of Styrene (St) and N‐cyclohexylmaleimide (NCMI) with the CuBr/bipyridine catalyst in anisole, initiated by 1‐phenylethyl bromide (1‐PEBr) or tetra‐(bromomethyl)benzene (TBMB), afforded well‐defined copolymers with predetermined molecular weights and low polydispersities, Mw/Mn < 1.5. The influences of several factors, such as temperature, solvent, and monomer ratio, on the copolymerization with the CuBr/bpy catalyst system were subsequently investigated. The apparent enthalpy of activation for the overall copolymerization was measured to be 28.2 kJ/mol. The monomer reactivity ratios were evaluated to be rNCMI = 0.046 and rSt = 0.127. Using TBMB as the initiator produced four‐armed star copolymer. The copolymerization of styrene and NCMI with TBMB/CuBr/bpy in PhOCH3 at 110 °C was found to provide good control of molecular weights and polydispersities and the similar copolymerization in cyclohexanone displayed poor control. The glass transition temperature of the resultant copolymer increases with increasing fNCMI, which indicates that the heat resistance of the copolymer has been improved by increasing NCMI. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1203–1209, 2000  相似文献   

18.
The synthesis by reversible addition‐fragmentation chain transfer (RAFT) polymerization of three phosphonated terpolymers with tailored architecture has been studied. A phosphonated methacrylate (MAUPHOS) was copolymerized with vinylidene chloride (VC2) and methyl acrylate (MA) to prepare a gradient terpolymer poly(VC2co‐MA‐co‐MAUPHOS). Besides, hydroxyethyl acrylate (HEA) was used as a functional monomer in RAFT polymerization to prepare a statistical poly(VC2co‐MA‐co‐HEA) terpolymer and a diblock poly(VC2co‐MA)‐b‐poly(HEA) terpolymer. The HEA‐containing polymers were then modified with a phosphonated epoxide to introduce the phosphonated group. The control of the polymerization was proven by kinetic studies (evolution of molecular weight vs. conversion) and by a successful block copolymerization. The architecture of the terpolymers was determined by the reactivity ratios of the monomers: terpolymerization of VC2, MA, and HEA leading to an ideal statistical terpolymer (no composition drift) whereas terpolymerization of VC2, MA, and the phosphonated methacrylate led to a gradient terpolymer. These terpolymers were characterized by size exclusion chromatography, 31P NMR and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 13–24, 2006  相似文献   

19.
Two novel monomers, ambrettolide epoxide and isopropyl aleuriteate, encompassing functional groups, were obtained in a single step from commercially available materials. Novozym 435 catalyzed ring opening polymerization of ambrettolide epoxide furnished a polymer of Mn = 9.7 kg/mol and PDI = 1.9 while the epoxide groups remained unaffected during the polymerization. Selective polymerization of the primary hydroxyl groups of isopropyl aleuriteate using Novozym 435 was feasible and a polymer with moderate molecular weight (Mn = 5.6 kg/mol, PDI = 3.2) was isolated in moderate yield (43%). Subsequently, copolymerization of isopropyl aleuriteate with ε‐CL in different ratios was performed, resulting in soluble, hydroxy functional polymers with good molecular weights (Mn = 10.4–27.2 kg/mol) in good yield (71–78%). The secondary hydroxy groups in the polymer reacted easily with hexyl isocyanate, showing the potential of isopropyl aleuriteate as a comonomer for the synthesis of functional polyesters. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5968–5978, 2007  相似文献   

20.
Summary: The evolution of the various structural units incorporated into hyperbranched polymers formed from the copolymerization of AB2 and AB monomers has been derived by the kinetic scheme. The degree of branching was calculated with a new definition given in this work. The degree of branching monotonously increased with increasing A group conversion (x) and the maximum value could reach 2r/(1 + r)2, where r is the initial fraction of AB2 monomers in the total. Like the average degree of polymerization, the mean‐square radius of gyration of the hyperbranched polymers increased moderately with A group conversion in the range x < 0.9 and displayed an abrupt rise when the copolymerization neared completion. The characteristic ratio of the mean‐square radius of gyration remained constant for the linear polymers. However, the hyperbranched polymers did not possess this character. In comparison with the linear polymerization, the weight average and z‐average degree of polymerization increased due to the addition of the branched monomer units AB2 and the mean‐square radius of gyration decreased quickly for the products of copolymerization.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号