首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
In plants, excess light has the potential to damage the photosynthetic apparatus. The damage is caused in part by reactive oxygen species (ROS) generated by electrons leaking from the photosynthetic electron transport system. To investigate the mechanisms equipped in higher plants to reduce high light (HL) stress, we surveyed the response of 7000 Arabidopsis genes to HL, taking advantage of the recently developed microarray technology. Our analysis revealed that 110 genes had a positive response to a 3 h treatment at a light intensity of 150 W m(-2). In addition to the scavenging enzymes of ROS, the genes involved in biosynthesis of lignins and flavonoids are activated by HL and actually resulted in increased accumulation of lignins and anthocyanins. Comparing the HL-responsive genes with drought-inducible genes identified with the same microarray system revealed a dense overlap between HL- and drought-inducible genes. In addition, we have identified 10 genes that showed upregulation by HL, drought, cold and also salt stress. These genes include RD29A, ERD7, ERD10, KIN1, LEA14 and COR15a, most of which are thought to be involved in the protection of cellular components.  相似文献   

3.
4.
5.
ATP-binding cassette (ABC) transporter is a large gene superfamily that utilizes the energy released from ATP hydrolysis for transporting myriad of substrates across the biological membranes. Although many investigations have been done on the structural and functional analysis of the ABC transporters in Oryza sativa, much less is known about molecular phylogenetic and global expression pattern of the complete ABC family in rice. In this study, we have carried out a comprehensive phylogenetic analysis constructing neighbor-joining and maximum-likelihood trees based on various statistical methods of different ABC protein subfamily of five plant lineages including Chlamydomonas reinhardtii (green algae), Physcomitrella patens (moss), Selaginella moellendorffii (lycophyte), Arabidopsis thaliana (dicot) and O. sativa (monocot) to explore the origin and evolutionary patterns of these ABC genes. We have identified several conserved motifs in nucleotide binding domain (NBD) of ABC proteins among all plant lineages during evolution. Amongst the different ABC protein subfamilies, ‘ABCE’ has not yet been identified in lower plant genomes (algae, moss and lycophytes). The result indicated that gene duplication and diversification process acted upon these genes as a major operative force creating new groups and subgroups and functional divergence during evolution. We have demonstrated that rice ABCI subfamily consists of only half size transporters that represented highly dynamic members showing maximum sequence variations among the other rice ABC subfamilies. The evolutionary and the expression analysis contribute to a deep insight into the evolution and diversity of rice ABC proteins and their roles in response to salt stress that facilitate our further understanding on rice ABC transporters.  相似文献   

6.
7.
8.
9.
CGP, a copolymer of aspartate and arginine, serves as a storage compound for nitrogen, carbon and energy in many cyanobacteria. Analysis of available genome sequences from prokaryotes identified ORFs putatively encoding proteins of high similarity to known cyanophycin synthetases and cyanophycinases from cyanobacteria in various strains of bacteria belonging to different phylogenetic taxa and not closely related to cyanobacteria. Genes of CGP metabolism occur in a wide range of bacteria exhibiting diverse metabolic capabilities, including aerobic and anaerobic respiration, fermentation, phototrophy and chemolithoautotrophy. This study identified different groups of cyanophycin synthetases and cyanophycinases, respectively, and proposes a collective terminology for the putative genes and enzymes of cyanophycin metabolism. Among 570 different microbial strains, whose genomes have been partially or completely sequenced and are publicly accessible, we identified 44 prokaryotes which possess a cyanophycin synthetase and are putatively able to synthesize CGP. From these, 31 prokaryotes harbor also a cyanophycinase enabling them to degrade CGP to dipeptides. From the latter, 24 strains possess in addition a dipeptidase necessary to hydrolyze beta-Asp-Arg dipeptides, thereby enabling them to completely utilize CGP. Therefore, CGP seems to have a much wider distribution among prokaryotes than previously recognized. Genes putatively encoding cyanophycin synthetase homologues were not identified in the genomes of Eukarya and Archaea and are therefore obviously only occurring in Eubacteria. In addition, the outcome of this detailed in silico analysis proposes to distinguish 10 different groups of cyanophycin synthetases.  相似文献   

10.
11.
12.
13.
LEA (Late Embryogenesis Abundant) proteins are abundant in plants and play a crucial role in abiotic stress tolerance. In our work, we primarily focused on the variations in physiochemical properties, conserved domains, secondary structure, gene ontology and evolutionary relationships among 40 LEA proteins of Triticum aestivum (common wheat). Wheat LEA protein belongs to first 6 classes out of the 13 classes present in LEApdB, the comprehensive database for LEA proteins. Proteins belonging to each LEApdB class have structures and functions distinguished from other classes. The study found three different conserved LEA domains in Triticum aestivum. One important domain was dehydrin, present in wheat proteins of classes 1, 2 and 4, though varied in sequence level, have similar biological processes. The study also found sequence level and phylogenetic similarity between dehydrin domains of class 1 and 4, but distinct from that of LEApdB class 2. This study also demonstrated functional diversity in two class 6 proteins occurred due to many destabilizing mutations in the LEA4 domain that caused alteration of ligand binding and conformational shift from 310-helix → turn within the domain. The LEA4 domains of these proteins also showed functional similarity and evolutionary relatedness with three other proteins of genus Aegilops, denoting that these proteins in Triticum aestivum were derived from its ancestor Aegilops. The study also assigned LEApdB class 4 to an unclassified LEA protein ‘WZY2-1’ based on amino acid composition, conserved domain, motif architecture and phylogenetic relatedness with class 4 proteins. Our study has revealed a detailed analysis of LEA proteins in Triticum aestivum and can serve as a pillar for further investigations and comparative analysis of wheat LEA proteins with other cereal or plant types.  相似文献   

14.
15.
16.
17.
18.
Heat shock proteins are an important class of molecular chaperones known to impart tolerance under high temperature stress. sHSP26, a member of small heat shock protein subfamily is specifically involved in protecting plant’s photosynthetic machinery. The present study aimed at identifying and characterizing sequence and structural variations in sHSP26 from genetically diverse progenitor and non-progenitor species of wheat. In silico analysis identified three paralogous copies of TaHSP26 to reside on short arm of chromosome 4A while one homeologue each was localized on long arm of chromosome 4B and 4D of cultivated bread wheat. Wild DD-genome donor Aegilops tauschii carried an additional sHSP26 gene (AET4Gv20569400) which was absent in the cultivated DD genome of bread wheat. In vitro amplification of this novel gene in wild accessions of Ae. tauschii and synthetic hexaploid wheat but not in cultivated bread wheat validated this finding. Further, significant length polymorphism could be identified in exon1 from diverse sHSP26 sequences. Multiple sequence alignment of procured sequences revealed numerous sSNPs and nsSNPs. D3A, P125 L, Q242 K were designated as homeolog specific- while A49 G as non-progenitor specific amino acid replacements. A 9-bp indel in TmHSP26-1(GA) translated into a deletion of SPM amino acid segment in chloroplast specific conserved consensus region III. High degree of divergence in nucleotide sequence between cultivated and wild species appeared in the form of higher ω values (Ka/Ks >1) indicating positive selection during the course of evolution. Phylogenetic analysis elucidated ancestral relationships between wheat sHSP26 proteins and orthologous proteins across plant kingdom. Overall, data mining approach may be employed as an effective pre-breeding strategy to identify and mobilize novel stress responsive genes and distinct allelic variants from wider germplasm collections of wheat to enhance climate resilience of present day elite wheat cultivars.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号