首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A system for molybdenum separation and enrichment aiming its determination in water and biological samples by graphite furnace atomic absorption spectrometry (GFAAS) is proposed. The procedure is based on the sorption of the molybdenum (VI) thiocyanate complex onto a mini-column packed with polyurethane foam (PUF). The elution is accomplished by a 3.0 mol l−1 nitric acid solution. Flow variables were optimized and an enrichment factor of 10 as well as a limit of detection (LOD) (3 s) of 0.08 μg l−1 in the sample solution were achieved. The coefficient of variation showed values of 3 and 2% for molybdenum solutions of 2.0 and 10.0 μg l−1, respectively. The accuracy of the method was confirmed by the good concordance between found and certified values in the analysis of certified reference materials (CRMs) (CASS-3 Nearshore Seawater, NIST 1547 Peach Leaves, NIST 1515 Apple Leaves and NIST 1572 Citrus Leaves). The procedure was also applied for the molybdenum determination in mineral waters as well as in produced water samples. The results obtained for the mineral water samples compared well with those obtained by ICP-MS. Concerning the produced water samples, in spite of their large salinity, recoveries of 90 to 120% at the 1 μg l−1 were observed.  相似文献   

2.
A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH4OH+0.05% w/v Triton X-100®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO3)2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1−1 Se, corresponding to 30 μg l−1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l−1, with a mean value of 114±22 μg l−1.  相似文献   

3.
Rojas FS  Ojeda CB  Pavón JM 《Talanta》2006,70(5):979-983
A flow injection (FI) system was used to develop an efficient on-line sorbent extraction preconcentration system for palladium by graphite furnace atomic absorption spectrometry (GFAAS). The investigated metal was preconcentrated on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). The palladium is eluted with 40 μl of HCl 4 M and directly introduced into the graphite furnace. The detection limit for palladium under the optimum conditions was 0.4 ng ml−1. This procedure was employed to determine palladium in different samples.  相似文献   

4.
A sample solution was passed at 20 ml min−1 through a column (150×4 mm2) of Amberlite IRA-410Stron anion-exchange resin for 60 s. After washing, a solution of 0.1% sodium borohydride was passed through the column for 60 s at 5.1 ml min−1. Following a second wash, a solution of 8 mol l−1 hydrochloric acid was passed at 5.1 ml min−1 for 45 s. The hydrogen selenide was stripped from the eluent solution by the addition of an argon flow at 150 ml min−1 and the bulk phases were separated by a glass gas–liquid separator containing glass beads. The gas stream was dried by passing through a Nafion® dryer and fed, via a quartz capillary tube, into the dosing hole of a transversely heated graphite cuvette containing an integrated L’vov platform which had been pretreated with 120 μg of iridium as trapping agent. The furnace was held at a temperature of 250°C during this trapping stage and then stepped to 2000°C for atomization. The calibration was performed with aqueous standards solution of selenium (selenite, SeO32−) with quantification by peak area. A number of experimental parameters, including reagent flow rates and composition., nature of the gas–liquid separator, nature of the anion-exchange resin, column dimensions, argon flow rate and sample pH, were optimized. The effects of a number of possible interferents, both anionic and cationic were studies for a solution of 500 ng 1−1 of selenium. The most severe depressions were caused by iron (III) and mercury (II) for which concentrations of 20 and 10 mg  1−1 caused a 5% depression on the selenium signal. For the other cations (cadmium, cobalt, copper, lead,. magnesium, and nickel) concentrations of 50–70 mg 1−1 could be tolerated. Arsenate interfered at a concentration of 3 mg−1, whereas concentrations of chloride, bromide, iodide, perchlorate, and sulfate of 500–900 mg l−1 could be tolerated. A linear response was obtained between the detection limit of 4 ng 1−1, with a characteristic mass of 130 pg. The RSDs for solutions containing 100 and 200 ng 1−1 selenium were 2.3% and 1.5%, respectively.  相似文献   

5.
A powerful and compact experimental arrangement for simultaneous multi-element measurement by laser induced fluorescence is presented. The analytes are excited in a commercial graphite furnace atomizer by cw semiconductor diode lasers and the fluorescence is detected by a simple photodiode without interference filters or a polychromator. In preliminary measurements, detection limits of 1 pg ml−1 (10 fg absolute) and 2 pg ml−1 (20 fg) for lithium and rubidium, respectively, have been obtained.  相似文献   

6.
A highly sensitive cathodic stripping voltammetric method for the determination of naringin is presented. It is based on the formation and accumulation of two naringin–mercury complexes at the electrode surface, followed by reduction of the surface species during a differential pulse voltammetric scan. The cathodic stripping responses at −0.25 V and −0.42 V, are evaluated with respect to various experimental conditions, such as composition and pH of the supporting electrolyte, naringin concentration, accumulation potential and preconcentration time. The new method is suitable for the determination of naringin concentrations between 0.1 mg l−1 (1.72×10−7 mol l−1) and 40 mg l−1 (6.88×10−5 mol l−1). A 3σ limit of detection of 32 μg l−1 (55 nmol l−1) can be reached. The relative standard deviation (r.s.d.) is <1.5%. Recovery experiments yielded a mean recovery of 97% (r.s.d.=4.1%). The application of the procedure to the selective determination of naringin in grapefruit juice is demonstrated.  相似文献   

7.
A THGA graphite furnace with Zeeman background correction has been used to determine platinum content in copper ore and copper concentrate at the part per billion (ppb) concentration level. Two different procedures for the separation of trace platinum have been applied: (i) use of an ion exchange resin; and (ii) a two-stage method based on platinum separation on inorganic carriers. The influence of interfering elements in the matrix (Cu, Pb, Fe, Ti, V, Au, Pd, Ir, Rh and Al) has been examined using a graphite furnace. It was found that the presence of Cu (12.5–100 mg l−1), Pb (100–500 mg l−1), Fe (100–2000 mg l−1), Ti (25–100 mg l−1), V (25–100 mg l−1), Au (25–300 mg l−1), Pd (20–250 mg l−1), Ir (0.5–3.5 mg l−1) and Rh (0.025–1 mg l−1) in the samples analyzed has no effect on the platinum absorption signal when using a recommended temperature program (Tpyr=1300°C, Tat=2450°C). Spectral interference was observed, which was due to aluminum, as a result of the close neighborhood of the Pt 265.945-nm and Al 266.039-nm lines. This interference could not be eliminated by the Zeeman background correction.  相似文献   

8.
Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 μm, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 μg of each modifier was applied using 25 injections of 20 μl of modifier solution (500 mg l−1), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55–60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg−1 were satisfactory for a routine procedure.  相似文献   

9.
The present procedure is based on the sequential selective reduction of mercury(II) and methyl mercury using two gas–liquid separators in series. Cold vapor atomic absorption spectrometry was used for detection. Mercury(II) is reduced by a 0.01% m/v sodium tetrahydroborate solution and driven to the absorption cell in the first separator. The methyl mercury species is reduced by the same reductant but at a 0.3% m/v concentration, and in the presence of iron(III) chloride. Parameters such as argon flow rate, and the NaBH4 and dithiophosphoric acid diacyl ester concentrations were optimized. At the optimized conditions, and using aqueous standards for calibration, the corresponding limits of detection (3σb, n=10) were 400 and 600 ng l−1 for mercury(II) and methyl mercury, respectively. The sample throughput was 12 h−1. The procedure was used for the determination of methyl mercury in dogfish liver and dogfish muscle certified reference materials, and good concordance between found and certified values was observed.  相似文献   

10.
Arsenic was determined in gold by flow injection hydride generation inductively coupled plasma-mass spectrometry following a batch mode reductive precipitation removal of the interfering gold matrix. A solution of potassium iodide, L-ascorbic acid, and hydrochloric acid was used as the reluctant. The recovery of gold by precipitation and filtration was 99 ± 3%. The detection limit for arsenic in gold was 55 ng g−1 in the solid. The concentration of arsenic that was determined in the Royal Canadian Mint gold sample FAU-10 was 29.7 μg g−1 in the solid; this value was indistinguishable, with 95% confidence, from values determined at the Royal Canadian Mint by graphite furnace atomic absorption spectrometry and by inductively coupled plasma-mass spectrometry. The standard deviation for four replicate determinations of the arsenic in FAU-10 was 0.972 μg g−1 in the solid.  相似文献   

11.
Kubota T  Yamaguchi T  Okutani T 《Talanta》1998,46(6):1311-1319
A sample solution containing less than 0.5 μg of As was adjusted to pH 2. As in the solution was collected on activated carbon (AC) as molybdoarsenate. The AC was directly introduced as an AC suspension into a graphite furnace atomizer, and the concentration of As was determined by atomic absorption spectrometry (AAS). This method is relatively free from interference caused by coexisting ions. The calibration curve was linear up to 0.1 mg l−1, and limit of detection of As was 0.004 mg l−1. When 1000 ml of sample solution is preconcentrated to 5 ml (enrichment factor is 200-fold) 0.02 μg l−1 of As could be determined, and relative standard deviation was below 4.0% (by the deuterium background correction system). The method was applied to sea water and well water, and the sum of As(III) and As(V) was determined with satisfactory results.  相似文献   

12.
Volatile species of Ag, Cu, Cd, and Zn were generated at room temperature by the addition of sodium tetrahydroborate (III) to an acidified solution of the analytes. The vapor-phase species were rapidly transported to a pre-heated graphite tube, the surface of which was previously treated with Ir as a permanent chemical modifier. The volatile species were trapped at the Ir treated tube surface, and the further heating of the furnace permits their determination by atomic absorption spectrometry. A univariate approach was used to achieve optimized conditions and derive the figures of merit. The limits of detection based on a 3σb criterion were 10 (1); 0.006 (6×10−4); 28 (2.8) and 1.1 (0.11) ng (μg ml−1) for Ag, Cd, Cu and Zn, respectively. Precision of replicate measurements was typically approximately 10% R.S.D. Using a transfer line as short as possible should minimize losses of analyte during the transport to the graphite furnace. The overall efficiency of the volatile species generation and trapping process estimated for silver was 13%.  相似文献   

13.
A simple, fast and reliable method, with a low detection limit, has been developed for the determination of total mercury in saliva samples. The method uses a brominating reagent, followed by on-line addition of KMnO4 at room temperature to convert organically bound mercury to inorganic mercury ions, and determines mercury by flow-injection cold-vapour atomic absorption spectrometry. Using the method described, complete recoveries of five mercury compounds from saliva were attained. Results obtained on real samples using the new method were comparable to that obtained using the established method with batch system. The detection limit of this method, based on three standard deviations of the blank, is 0.05 μg l−1 Hg in a saliva sample of 500 μl. A sample throughput of 80 measurements per hour is possible with the method. The calibration curves are linear up to 20 μg l−1 and the dynamic range extends to 40 μg l−1 Hg. At a concentration of 1μg l−1 mercury in saliva, the relative standard deviation is about 2% for 11 replicates; a total volume of 0.5 ml saliva is required for three replicates.  相似文献   

14.
Carrilho EN  Krug FJ  Zagatto EA 《Talanta》1995,42(12):2021-2026
Iron interference in the spectrophotometric catalytic determination of molybdenum based on the iodide-hydrogen peroxide reaction can be corrected by using sulphosalicylic acid as masking and color-forming reagent. The catalytic influence of iron ions is circumvented to the extent of about 90% and correction of any remaining iron ions is possible by monitoring the colored iron(III)-salicylate complex at 490 nm. In this way, iron is also determined. With the proposed system, molybdenum can be determined in plant and food digests within the 0–100 μg Mo 1−1 range in the presence of up to 25 mg Fe 1−1, at a sampling rate of about 50 determinations h−1. The relative standard deviation of 10 consecutive measurements was estimated as < 2%. Results for samples were comparable with those obtained by graphite furnace atomic absorption spectrometry. In addition, recoveries within the range 94–100% were calculated.  相似文献   

15.
Bagheri H  Gholami A 《Talanta》2001,55(6):681-1150
A new, simple and sensitive method for the simultaneous determination of mercury(II) and methylmercury chloride at sub-ng l−1 levels in river waters is described. Inorganic and organic mercury were preconcentrated from fresh water samples simultaneously on a laboratory-made column containing 2-mercaptobenzimidazol loaded on silica gel and then quantitatively eluted with 0.05 M KCN solution and 2.0 M HCl to desorp inorganic and methylmercury species, respectively. After irradiation with an intensive UV source, MeHg+ was decomposed and mercury vapours were generated from inorganic and organic mercury using an acidic SnCl2 solution in a continuous flow system and were subsequently determined with a cold vapour atomic fluorescence (CV-AFS) spectrometer. Detection limits (3σ) were 0.07 and 0.05 ng l−1 (as Hg) for mercury(II) chloride and methylmercury chloride, respectively. Relative standard deviations of method (%R.S.D.) were 8.8 and 10 for inorganic and organomercuric species in the river water, respectively. The analysis of real samples, taken from different rivers, showed that inorganic mercury levels ranged from 4.0±0.6 to 12±1 ng l−1 (as Hg and 95% confidence limit) and methylmercury levels at 0.2±0.02 ng l−1(as Hg).  相似文献   

16.
The cathodic adsorptive electrochemical behavior of guanine in the presence of some metal ions at the static mercury drop electrode was investigated. A 1.0×10−3 mol l−1 NaOH or a 2.0×10−2 mol l−1 Hepes buffer at pH 8.0 solutions were used as supporting electrolytes. The reduction peak potential for guanine was found to be around −0.15 V, which is very close to the mercury reduction wave. A new peak appears at −0.60 V in the presence of copper or at −1.05 V in the presence of zinc. A square wave voltammetric procedure for electroanalytical determination of guanine in 2.0×10−2 mol l−1 Hepes buffer at pH 8.0 containing 1.6×10−5 mol l−1of copper ions, was developed. An accumulation potential of −0.15 V during 270 s for the prior adsorption of guanine at the electrode surface was used. The response of the system was found to be linear in the range of guanine concentration from 6.62×10−8 to 1.32×10−7 mol l−1 and the detection limit was 7.0×10−9 mol l−1. The influence of DNA bases such as adenine, cytosine and thymine was also examined. Cyclic voltammetry was used to characterize the interfacial and redox mechanism.  相似文献   

17.
Preconcentration of trace impurities form large-sized samples of uranium metal and thorium oxide using a small column of Chelex-100 followed by their determination using graphite furnace atomic absorption spectrometry (GFAAS) is reported. A 0.5–10-g amount of the sample (uranium metal or thorium oxide) was dissolved, complexed with ammonium carbonate and subjected to the ion-exchange procedure. The retained analytes were eluted with 2–4 M nitric acid and brought to a small volume for a final dilution to 10-25 ml for their determination using GFAAS. The validity of the separation procedure and recoveries at μg kg−1 levels was checked by standard addition; the recoveries were> 95%.  相似文献   

18.
The principal route for decay of Hg 6s6p(3P1) in xenon is shown to be bimolecular deactivation to the mercury ground state, with rate coefficient 9.1 × 10−13 cm3 molecule−1 s−1; relaxation to the 3P0 state plays a negligible role. The equilibrium constant of the reaction Hg(3P1) + Xe HgXe(A 3O+), has been recorded as 1.73 × 10−20 cm3 molecule−1 at 293 K.  相似文献   

19.
A method for the determination of total organic tin from marine water samples by electrothermal atomization absorption spectrometry (ETAAS) is described. Samples are previously preconcentrated with a chelating molecule (tropolone) impregnated on a macroporous polymer (Amberlite XAD-2). The graphite furnace programme and preconcentration parameters were optimized. Calibration and addition graphs were performed. Sensitivity obtained with this procedure was 13 ng l−1. Relative standard deviation was always >10% and analytical recovery were satisfactory, 100%. Some possible interferences were investigated, having no problems with this factor. This procedure allows the distinction between organotin compounds and inorganic tin IV, since the latter is not retained on the column.  相似文献   

20.
A procedure for the determination of As, Pb, Se and Sn in sediment slurries by electrothermal vaporization inductively coupled plasma mass spectrometry is proposed. The slurry, 1 mg ml−1, is prepared by mixing the sample ground to a particle size 50 μm with 5% v/v nitric and 1% v/v hydrofluoric acids in an ultrasonic bath. The slurry was homogenized with a constant flow of argon in the autosampler cup, just before transferring an aliquot to the graphite furnace. The tube was treated with Ru as a permanent modifier, and an optimized mass of 1 μg of NaCl was added as a physical carrier. The pyrolysis temperature was optimized through pyrolysis curves, and a compromised temperature of 800 °C was used; the vaporization temperature was 2300 °C. The effect of different acid concentrations in the slurry on the analyte signal intensities was also evaluated. The accuracy of the method was assured by the analysis of certified reference sediments MESS-2, PACS-2 and HISS-1 from the National Research Council Canada, SRM 2704 and SRM 1646a from the National Institute of Standards and Technology and RS-4 from a round robin test, using external calibration with aqueous standards prepared in the same medium as the slurries. The obtained concentrations were in agreement with the certified values according to the Student's t-test for a confidence level of 95%. The detection limits in the samples were: 0.17 μg g−1 for As; 0.3 μg g−1 for Pb; 0.05 μg g−1 for Se and 0.28 μg g−1 for Sn. The precision found for the different sediment samples, expressed as R.S.D. was 1–8% for As, 2–9% for Pb, 6–12% for Se and 3–8% for Sn (n=5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号