首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Detonation combustion of a hydrogen-air mixture entering an axisymmetric convergent-divergent nozzle at a supersonic velocity is considered under atmospheric conditions at altitudes up to 24 km. The investigation is carried out on the basis of the two-dimensional gasdynamic Euler equations for a multicomponent reacting gas. The limiting altitude ensuring detonation combustion in a Laval nozzle of given geometry is numerically established for freestream Mach numbers 6 and 7. The possibility of the laser initiation of detonation in a supersonic flow of a stoichiometric, preliminarily heated hydrogen-air mixture is experimentally studied. The investigation is carried out in a shock tube under conditions simulating a supersonic flow in the nozzle throat region.  相似文献   

2.
The feasibility of steady detonation combustion of a hydrogen-air mixture entering at a supersonic velocity in an axisymmetric convergent-divergent nozzle with a central coaxial cylinder is considered. The problem of the nozzle starting and the initiation of detonation combustion is numerically solved with account for the interaction of the outflowing gas with the external supersonic flow. The modeling is based on the gasdynamic Euler equations for an axisymmetric flow. The calculations are carried out using the Godunov scheme on a fine fixed grid which allows one to study in detail the interaction of an oblique shock wave formed in the diffuser with the nozzle axis. It is shown that a central coaxial cylinder ensures the starting with the formation of supersonic flow throughout the entire nozzle and stable detonation combustion of a stoichiometric hydrogen-air mixture in the divergent section of the nozzle.  相似文献   

3.
The flow of igniting hydrogen-air mixtures entering an axisymmetric convergent-divergent nozzle at a supersonic velocity is considered. A possibility of stabilizing detonation combustion is numerically investigated at different freestream Mach numbers with account for nonuniform distribution of hydrogen concentration at the nozzle entry. The investigation is performed on the basis of the two-dimensional gasdynamic Euler equations for a multicomponent reacting gas. A detailed model of chemical reactions is used. The calculated thrust is compared with the drag of a conical housing containing the supersonic nozzle considered.  相似文献   

4.
The problem of profiling a supersonic nozzle with uniform outlet flow is considered when the contour is constructed from a point on a given convergent section of the nozzle. It is shown that there are contours such that the flow in the throat is supersonic in choked regimes (as distinct from common notions of mixed or uniform sonic flow). The influence of flow nonuniformity in the throat region on the thrust of a supersonic nozzle is analyzed.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 132–139, May–June, 1996.  相似文献   

5.
A two-phase flow with high Reynolds numbers in the subsonic, transonic, and supersonic parts of the nozzle is considered within the framework of the Prandtl model, i.e., the flow is divided into an inviscid core and a thin boundary layer. Mutual influence of the gas and solid particles is taken into account. The Euler equations are solved for the gas in the flow core, and the boundary-layer equations are used in the near-wall region. The particle motion in the inviscid region is described by the Lagrangian approach, and trajectories and temperatures of particle packets are tracked. The behavior of particles in the boundary layer is described by the Euler equations for volume-averaged parameters of particles. The computed particle-velocity distributions are compared with experiments in a plane nozzle. It is noted that particles inserted in the subsonic part of the nozzle are focused at the nozzle centerline, which leads to substantial flow deceleration in the supersonic part of the nozzle. The effect of various boundary conditions for the flow of particles in the inviscid region is considered. For an axisymmetric nozzle, the influence of the contour of the subsonic part of the nozzle, the loading ratio, and the particle diameter on the particle-flow parameters in the inviscid region and in the boundary layer is studied. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 6, pp. 65–77, November–December, 2005.  相似文献   

6.
Many of the published theoretical studies of quasi-one-dimensional flows with combustion have been devoted to combustion in a nozzle, wake, or streamtube behind a normal shock wave [1–6].Recently, considerable interest has developed in the study of two-dimensional problems, specifically, the effective combustion of fuel in a supersonic air stream.In connection with experimental studies of the motion of bodies in combustible gas mixtures using ballistic facilities [7–9], the requirement has arisen for computer calculations of two-dimensional supersonic gas flow past bodies in the presence of combustion.In preceding studies [10–12] the present author has solved the steady-state problem under very simple assumptions concerning the structure of the combustion zone in a detonation wave.In the present paper we obtain a numerical solution of the problem of supersonic hydrogen-air flow past a sphere with account for the nonequilibrium nature of eight chemical reactions. The computations encompass only the subsonic and transonic flow regions.The author thanks G. G. Chernyi for valuable comments during discussion of the article.  相似文献   

7.
The starting of an axisymmetric convergent-divergent nozzle, with the result that supersonic flow is formed within almost the entire channel, is modeled, as applied to the hypersonic aerodynamic setup of the Institute of Mechanics of Moscow State University. A successful starting is realized when the nozzle is thrown in a uniform supersonic air flow at a fairly high Mach number. The steady flow structure is studied. It is numerically shown that in the convergent section of the channel there arises an oblique shock wave whose interaction with the nozzle axis leads to the formation of a reflected shock and a curvilinear Mach disk with a region of unsteady subsonic flow in the vicinity of the throat. The mathematical model is based on the two-dimensional Euler equations for axisymmetric gas flows.  相似文献   

8.
In the framework of the European Commission co-funded LAPCAT (Long-Term Advanced Propulsion Concepts and Technologies) project, the methodology of a combined ground-based testing and numerical modelling analysis of supersonic combustion flow paths was established. The approach is based on free jet testing of complete supersonic combustion ramjet (scramjet) configurations consisting of intake, combustor and nozzle in the High Enthalpy Shock Tunnel Göttingen (HEG) of the German Aerospace Center (DLR) and computational fluid dynamics studies utilising the DLR TAU code. The capability of the established methodology is demonstrated by applying it to the flow path of the generic HyShot II scramjet flight experiment configuration.  相似文献   

9.
Three variants of the startup of an axisymmetric convergent-divergent nozzle are considered with the static pressures at the entry and exit of the nozzle being the same at the beginning of the process. The subsonic startup corresponds to open nozzle acceleration in air. The supersonic startup simulates the sudden opening of a cover at the nozzle inlet under supersonic flight conditions. A successful nozzle startup with the formation of steady supersonic flow along the whole channel is realized in the third variant of supersonic startup with gas injection through a small region of the wall of the divergent nozzle section. The investigation is performed numerically, on the basis of the Euler equations for axisymmetric gas flows.  相似文献   

10.
The problem of an axisymmetric gas flow in a supersonic nozzle and in the jet escaping from the nozzle to a quiescent gas is solved within the framework of Navier-Stokes equations. The calculated pressure distribution is compared with that measured in the jet by a Pitot tube. The influence of the jet pressure ratio, Reynolds number, and half-angle of the supersonic part of the nozzle on nozzle flow and jet flow parameters is studied. It is shown that the distributions of gas-dynamic parameters at the nozzle exit are nonuniform, which affects the jet flow. The flow pattern for an overexpanded jet shows that jet formation begins inside the nozzle because of boundary-layer displacement from the nozzle walls. This result cannot be obtained with the inviscid formulation of the problem.  相似文献   

11.
Detonation combustion of hydrogen-air mixtures entering an axisymmetric convergent-divergent nozzle at a supersonic velocity is considered. The nozzle geometry does not ensure gas self-ignition; for this reason, forced ignition is used, which, under certain conditions, leads to the formation of stationary detonation combustion in the case of both uniform and nonuniform hydrogen distribution at the channel entry. The nonlinear problem of the stability of these combustion regimes against periodic disturbances of the hydrogen concentration in the oncoming flow is numerically solved. The study is performed on the basis of the two-dimensional gasdynamic Euler equations for a multicomponent reacting gas. A detailed model of chemical reactions is used.  相似文献   

12.
We establish the existence and stability of multidimensional steady transonic flows with transonic shocks through an infinite nozzle of arbitrary cross-sections, including a slowly varying de Laval nozzle. The transonic flow is governed by the inviscid potential flow equation with supersonic upstream flow at the entrance, uniform subsonic downstream flow at the exit at infinity, and the slip boundary condition on the nozzle boundary. Our results indicate that, if the supersonic upstream flow at the entrance is sufficiently close to a uniform flow, there exists a solution that consists of a C 1,α subsonic flow in the unbounded downstream region, converging to a uniform velocity state at infinity, and a C 1,α multidimensional transonic shock separating the subsonic flow from the supersonic upstream flow; the uniform velocity state at the exit at infinity in the downstream direction is uniquely determined by the supersonic upstream flow; and the shock is orthogonal to the nozzle boundary at every point of their intersection. In order to construct such a transonic flow, we reformulate the multidimensional transonic nozzle problem into a free boundary problem for the subsonic phase, in which the equation is elliptic and the free boundary is a transonic shock. The free boundary conditions are determined by the Rankine–Hugoniot conditions along the shock. We further develop a nonlinear iteration approach and employ its advantages to deal with such a free boundary problem in the unbounded domain. We also prove that the transonic flow with a transonic shock is unique and stable with respect to the nozzle boundary and the smooth supersonic upstream flow at the entrance.  相似文献   

13.
In recent years considerable interest has developed in the problems of steady-state supersonic flow of a mixture of gases about bodies with the formation of detonation waves and slow combustion fronts. This is due in particular to the problem of fuel combustion in a supersonic air stream.In [1] the problem of supersonic flow past a wedge with a detonation wave attached to the wedge apex is solved. This solution is based on using the equation of the detonation polar obtained in [2]-the analog of the shock polar for the case of an exothermic discontinuity. In [3] a solution is given of the problem of cone flow with an attached detonation wave, and [4] presents solutions of the problems of supersonic flow past the wedge and cone with the formation of attached adiabatic shocks with subsequent combustion of the mixture in slow combustion fronts. In the two latter studies two different solutions were also found for the problem of flow past a point ignition source, one solution with gas combustion in the detonation wave, the other with gas combustion in the slow combustion front following the adiabatic shock. These solutions describe two different asymptotic pictures of flow of a combustible gas mixture past bodies.In an experimental study of the motion of a sphere in a combustible gas mixture [5] it was found that the detonation wave formed ahead of the sphere splits at some distance from the body into an ordinary (adiabatic) shock and a slow combustion front. Arguments are presented in [6] which make it possible to explain this phenomenon and in certain cases to predict its occurrence.The present paper presents examples of the calculation of flow of a combustible gas mixture past a sphere with a detonation wave in the case when the wave does not split. In addition, the flow near the point at which the detonation wave splits is analyzed for the case when splitting occurs where the gas velocity behind the wave is greater than the speed of sound. This analysis shows that in the given case the flow calculation may be carried out without any particular difficulties. On the other hand, the calculation of the flow for the case when the point of splitting is located in the subsonic portion of the flow behind the wave (or in the region of influence of the subsonic portion of the flow) presents difficulties. This flow case is similar to the problem of the supersonic jet of finite width impacting on an obstacle.  相似文献   

14.
Ten-See Wang 《Shock Waves》2009,19(3):251-264
The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.
  相似文献   

15.
Numerical methods, based on first order difference schemes are used to investigate features of three-dimensional subsonic and supersonic flows of an inviscid non-heat-conducting gas in control jets. Elements of the nozzle channels considered are axisymmetric, and flow symmetry arises from the nonaxial feature of the prenozzle volume and the subsonic part of the nozzle, or because of nonaxiality of elements of the supersonic part. In the first case the nozzle includes an asymmetric subsonic region in which reverse-circulatory flow is observed, and in the second case it includes a region of sudden expansion of the supersonic flow from the asymmetric stagnation zone.Translated from Izvestiya Akademii NaukSSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 126–133, November–December, 1978.The authors thank A. N. Kraiko for useful comments and M. Ya. Ivanov for his interest in this work.  相似文献   

16.
Existing computational methods [1–5] do not enable one to calculate complex flows behind steps, accounting for nonuniformity of the incident supersonic flow and the effect of compression and expansion waves arriving in the near-wake region. For example, computational methods based on the methods of [1] or [2] are used mainly in uniform supersonic flow ahead of the base edge and, for the most part, cannot be used to calculate flow in annular nozzles with irregular conditions. An exception is reference [6], which investigated flow in an annular nozzle behind a cylindrical center-body. The present paper suggests a method, based on references [7, 8] for calculating the base pressure behind two-dimensional and three-dimensional steps, washed by a supersonic jet.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 43–51, November– December 1977.  相似文献   

17.
A method is described for the calculation of plane and axisymmetric flows of gas mixtures with vibrational energy relaxation in the subsonic, transonic, and supersonic regions of the nozzle. The method is based on numerical solution of the inverse problem of nozzle theory. Results are given for the flow of a C02-N2-H2O-He mixture with vibrational relaxation and compared with the results of one-dimensional calculations. It is found that vibrational-energy relaxation has a significant effect on the gasdynamic parameters of flow in nozzles with large, relative expansion and therefore in choosing a nozzle shape, especially in the supersonic region, it is necessary to calculate the nonequilibrium flow. It is shown that the geometry of the transonic and supersonic regions of the nozzle has a considerable effect on the distribution of the inverse population of the level and the amplification factor.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 125–131, September–October, 1977.  相似文献   

18.
The contouring of near-optimal three-dimensional nozzles with subsonic flow regions is considered with reference to certain examples. The contouring is carried out in accordance with the earlier-developed direct optimization technique using the approximation of the surfaces of the objects under consideration by the Bernstein-Bézier polynomials and tested against both the solution of the optimization problem for the supersonic region of an axisymmetric convergent-divergent nozzle and the problem of contouring the supersonic region of a nozzle from the dense multi-nozzle maximum-thrust nozzle cluster. The problems of contouring three-dimensional transonic nozzles of an infrared stealth engine and the three-dimensional nozzle of a high-velocity ramjet are considered. The transonic nozzle optimization is realized within the framework of the Reynolds equations. A modified technique for describing the geometry under consideration using the inhomogeneous Bernstein-Bézier surfaces is proposed to more completely describe the set of the possible shapes.  相似文献   

19.
The spatial structure of the flow in a supersonic underexpanded jet exhausting from a convergent nozzle with vortex generators (chevrons) at the exit is experimentally studied. Exhaustion of a supersonic underexpanded jet from a nozzle with chevrons at the nozzle exit is numerically simulated with the use of the Fluent commercial software package. The experimental and numerical data are demonstrated to be in reasonable agreement. The influence of chevrons on the process of gas mixing is estimated.  相似文献   

20.
A study is made of the interaction between an axisymmetric supersonic jet exhausting into vacuum and an obstacle of a fairly complicated configuration and positioned relative to the nozzle in such a way that in the interaction region behind the detached shock wave there is a three-dimensional flow possessing a symmetry plane. The flow in the interaction region is described by the system of equations of motion of an inviscid perfect gas with boundary conditions on the shock wave (Rankine-Hugoniot relation) and on the surface of the obstacle (no-flow condition). The other boundaries of the region are the symmetry plane of the flow and an arbitrarily chosen surface in the supersonic part of the flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti Gaza, No. 1, pp. 156–161, January–February, 1981.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号