首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
An intercomparison survey has been carried out in order to evaluate the performance of two related X-ray fluorescence techniques as compared to the achievements of several other analytical techniques applied for trace elements determination in drinking water. A relatively new technique, total reflection X-ray fluorescence (TXRF) and a novel related technique, grazing emission X-ray fluorescence (GEXRF) have been used for the analysis of a mineral water sample. The concentrations of the following elements have been determined: Na, Mg, K, Ca, Ni, Cu, Zn and Sr. The mineral water sample has also been analyzed by a number of other analytical techniques, routinely utilized in drinking water quality control. The analyses were performed in eleven laboratories which reported 286 individual determinations producing 75 laboratory means. From the obtained results, it can be concluded that the TXRF technique is suitable for a direct determination of heavy elements in drinking water (above potassium, Z = 19). This technique can compete with other analytical techniques routinely used in water quality monitoring. First results obtained with GEXRF spectrometry show that this technique can be successfully applied for the determination of low-Z elements in drinking water. However, results for sodium and magnesium were systematically too low, indicating that modifications of the quantification procedure may be required to improve the accuracy of determination for these light elements. Received: 5 January 1998 / Revised: 17 February 1998 / Accepted: 18 February 1998  相似文献   

2.
Total reflection X-ray fluorescence spectrometry (TXRF) is presented as a genuine surface analytical technique. Its low information depth is shown to be the characteristic feature differentiating it from other energy dispersive X-ray fluorescence methods used for layer and surface analysis. The surface sensitivity of TXRF and its analytical capability together with the limitations of the technique are discussed here using typical applications including the contamination control of silicon wafers, thin layer analysis and trace element determination. For buried interfaces and implantation depth profiles in silicon a combination of TXRF and other techniques has been applied successfully. The TXRF method has the particular advantage of being calibrated without the need for standards. This feature is demonstrated for the example of the element arsenic.  相似文献   

3.
In grazing-emission X-ray fluorescence (GEXRF) spectrometry wavelength-dispersive detection can be applied. Much softer radiation and hence lighter elements than in total-reflection X-ray (TXRF) spectrometry can thus be detected. We used simulations to investigate methods of quantification of GEXRF results involving soft characteristic radiation. From these studies, it is concluded that for ultra-thin layers, e.g. the sub-monolayer amounts encountered in semiconductor contamination analysis, calibration plots are linear. For thicker layers, quantification should be performed very carefully because of deviations from linearity due to absorption of radiation and to oscillations in the calibration curve. These oscillations are caused by interference of fluorescence radiation emitted directly towards the detector and radiation reflected at the sample–substrate interface. Suggestions for a judicious choice of measurement conditions are made and the benefits of internal standardisation are discussed.  相似文献   

4.
An electrolytic separation and enrichment technique was developed for the determination of trace elements by total-reflection X-ray fluorescence spectroscopy (TXRF). The elements of interest are electrodeposited out of the sample solution onto a solid, polished disc of pure niobium which is used as sample carrier for the TXRF measurement. The electrochemical deposition leads to a high enrichment of the analytes and at the same time to a removal of the matrix. This results in substantially improved detection limits in the lower picogram per gram region. The deposited elements are directly measured by TXRF without any further sample preparation step. The homogeneous thin layer of the analytes is an ideal sample form for TXRF, because scattered radiation from the sample itself is minimized. The proposed sample preparation method is useful particularly for the analysis of heavy metals in liquid samples with for TXRF disturbing matrices, e.g. sea water.  相似文献   

5.
About two-thirds of the Hungarian population is living in areas where drinking water contains less than 0.025 mg/L I2. Iodine is an essential element required for the synthesis of thyroid hormones. The recommended daily allowance (RDA) is 0.150 mg for adults (WHO [17]). In the case of iodine deficiency mineral water containing iodine and seaweed products could serve as the natural source of this element. In the present study, the capability and limitations of total reflection X-ray fluorescence (TXRF) and inductively coupled plasma atomic emission (ICP-AES) spectrometry for the determination of iodine are discussed, in the case of commercially available dietary supplements and differently processed seaweed (kelp) products. Multi-mineral tablets and kelp samples were digested using concentrated nitric acid before analysis. Extraction using a 25% ammonia solution was proved to be effective as an alternative sample preparation procedure for seaweed and dietary supplement tablets containing iodine. Precipitation of silver iodide, as a sample preparation step of mineral water, was applied to prevent loss of volatile iodine during solvent evaporation. ICP-AES measurement was found to be seriously affected by spectral line coincidence between the prominent line of iodine and the adjacent phosphorus line. TXRF was proved to be line coincidence free and suitable for iodine analysis. TXRF determination of iodine in mineral water, in seaweed samples and in dietary supplement tablets has not been reported yet.  相似文献   

6.
A complete analysis of a landfill leachate coming from a landfill site of several years old was performed with a total reflection X-ray fluorescence (TXRF) spectrometer in comparison with an inductively coupled plasma optical emission spectroscopy (ICP-OES). The results of the two analytical techniques are compared and advantages and drawbacks emphasized. The TXRF analytical technique appears a reliable, economic, rapid and simpler technique for the everyday monitoring of the composition of the landfill leachate before the purification treatment and after the treatment to check the quality of the resulting purified water. The TXRF and the ICP-OES analytical techniques were also employed in the analysis of three groundwater samples.  相似文献   

7.
Recently there is a growing interest in low Z elements such as carbon, oxygen up to sulphur and phosphorus in biological specimen. Total reflection X-ray fluorescence (TXRF) spectrometry is a suitable technique demanding only very small amounts of sample. On the other side, the detection of low Z elements is a critical point of this analytical technique. Besides other effects, self absorption may occur in the samples, because of the low energy of the fluorescence radiation. The calibration curves might be not linear any longer. To investigate this issue water samples and samples from human cerebrospinal fluid were used to examine absorption effects. The linearity of calibration curves in dependence of sample mass was investigated to verify the validity of the thin film approximation. The special requirements to the experimental setup for low Z energy dispersive fluorescence analysis were met by using the Atominstitute's TXRF vacuum chamber. This spectrometer is equipped with a Cr-anode X-ray tube, a multilayer monochromator and a SiLi detector with 30 mm2 active area and with an ultrathin entrance window. Other object on this study are biofilms, living on all subaqueous surfaces, consisting of bacteria, algae and fungi embedded in their extracellular polymeric substances (EPS). Many trace elements from the water are bound in the biofilm. Thus, the biofilm is a useful indicator for polluting elements. For biomonitoring purposes not only the polluting elements but also the formation and growth rate of the biofilm are important. Biofilms were directly grown on TXRF reflectors. Their major elements and C-masses correlated to the cultivation time were investigated. These measured masses were related to the area seen by the detector, which was experimentally determined. Homogeneity of the biofilms was checked by measuring various sample positions on the reflectors.  相似文献   

8.
The grazing emission X-ray fluorescence (GEXRF) technique was applied to the analysis of different Al films, with nominal thicknesses in the range of 1 nm to 150 nm, on Si wafers. In GEXRF the sample volume from which the fluorescence intensity is detected is restricted to a near-surface region whose thickness can be tuned by varying the observation angle. This is possible because of the refraction of the fluorescence X-rays and the quite long emission paths within the probed sample. By recording the X-ray fluorescence signal for different shallow emission angles, defined relatively to the flat, smooth sample surface, the deposited Al surface layers of the different samples could be well characterized in terms of layer thickness, layer density, oxidation and surface roughness. The advantages offered by synchrotron radiation and the employed wavelength-dispersive detection setup were profited from. The GEXRF results retrieved were confirmed by complementary measurements. The experimental setup, the principles and advantages of GEXRF and the analysis of the recorded angular intensity profiles will be discussed in details.  相似文献   

9.
The potential of a prototype grazing-emission X-ray fluorescence spectrometer for reliable analysis of sample solutions, obtained by pressurized microwave oven digestion of Si-spiked organic and biological materials, was investigated as part of an inter-laboratory study. The fact that this grazing-emission technique is based on the total reflection phenomenon and wavelength-dispersive detection, gives it the benefit to determine light elements in a sensitive way. Results of the determination of silicon in pork liver, cellulose, urine, serum, spinach, beer, mineral water and horsetail (dry plant extract) samples are presented. Some of the results are compared with those obtained with other analytical techniques. The study proved that determination of silicon traces in biological matrices represents an extremely difficult task, however, measurements of silicon are achieved with acceptable precision. The most important problems still arise when sample pre-treatment is needed prior to analysis.  相似文献   

10.
Sapphire is presented as a new sample carrier material for total-reflection X-ray fluorescence spectrometry (TXRF). A comparison with conventional sample carrier materials such as quartz glass, Perspex®, glassy carbon and boron nitride demonstrates that sapphire has all the physical and chemical properties required for TXRF micro and trace analysis. Moreover, sapphire sample carriers allow the determination of silicon in many matrices in a comparatively simple way. Especially for airborne particulate matter, acid digestion can be avoided by cool-plasma ashing of suitable filter materials directly on the sample carrier. This technique has been successfully applied to environmental samples.  相似文献   

11.
The problems encountered in the determination of trace elements in small sample volumes of the order of 1 to 10 l (e.g. in droplets of water) are discussed. Total reflexion X-ray fluorescence (TXRF) and neutron activation analysis (NAA) are applied for the determination of Na, Mg, K, Ca, Mn, Fe, Co, and Cu in concentrations of 0.01 to 10 mg/L in 1 to 10 L of water. The applied methods are described, the results are discussed and the advantages of TXRF are brought forward.  相似文献   

12.
In grazing-emission X-ray fluorescence spectrometry (GEXRF), the sample is irradiated at approximately normal incidence, and only that part of the fluorescence radiation is detected that is emitted at grazing angles. This configuration allows the use of wavelength-dispersive detection. This type of detection has the advantages of substantially better energy resolution at longer wavelengths (light elements, L and M lines of heavier elements) and a much larger dynamic range than the energy-dispersive detectors currently used in grazing X-ray techniques. Typical examples are presented of applications that are made possible by this new technique.  相似文献   

13.
A study regarding uranium determination in seawater by total reflection X-ray fluorescence (TXRF) spectrometry is reported. Uranium, present in seawater in concentration of about 3.3 ng/mL, was selectively extracted in diethyl ether and determined by TXRF after its preconcentration by evaporation and subsequent dissolution in a small volume of 1.5% suprapure HNO3. Yttrium was used as an internal standard. Before using diethyl ether for selective extraction of uranium from seawater, its extraction behavior for different elements was studied using a multielement standard solution having elemental concentrations in 5 ng/mL levels. It was observed that the extraction efficiency of diethyl ether for uranium was about 100% whereas for other elements it was negligible. The detection limit of TXRF method for uranium in seawater samples after pre-concentration step approaches to 67 pg/mL. The concentrations of uranium in seawater samples determined by TXRF are in good agreement with the values reported in the literature. The method shows a precision within 5% (1σ). The study reveals that TXRF can be used as a fast analytical technique for the determination of uranium in seawater.  相似文献   

14.
The influence of analyte mass concentration on determination of detection limits in X-ray fluorescence spectrometry has been investigated experimentally. Both the total reflection X-ray fluorescence (TXRF) and the conventional energy-dispersive X-ray fluorescence techniques have been used to derive the dependence of analyte mass concentration on the values of detection limits. Results obtained indicate that values of detection limits are optimum, or in other words, they are closer to the true detection limit of the technique, when analyte concentrations are in the range of 10 times of the detection limit.  相似文献   

15.
A study to assess the applicability of Total Reflection X-ray Fluorescence (TXRF) spectrometry as a microanalytical technique for the determination of uranium and thorium as major elements in presence of each other has been made. Effect of dilution of the sample on the analytical results has been investigated. It has been found that dilution of the sample does not affect the analytical results significantly. Also the analytical results of uranium and thorium are similar with different internal standards e.g. cobalt, gallium and yttrium. With a sample size of 10 μL and the concentrations of the analytes in the range of 1–50 μg/mL and total matrix concentration less than 200 μg/mL, the precision and accuracy of the method were found to be better than 3% (1 s) and 4%, respectively. For higher concentration ranges of the analyte (up to about 700 μg/mL), the precision and accuracy values were better than 6% (1 s) and 5%, respectively. The TXRF method has an advantage of using small sample volume of about 10 μL, produces very small radioactive waste and is nondestructive but requires dissolution of the sample.  相似文献   

16.
XRF and TXRF were established as useful techniques for multi-element analysis of whole blood and human head hair samples. Direct-XRF with different collimation units and different X-ray excitation modes was successfully used for the determination of S, P, K, Ca, Fe, and Br elements in blood samples and K, Ca, Mn, Fe elements in human hair samples. Direct analysis by TXRF was used for the determination of Rb and Sr in digested blood and human hair samples, respectively, while, the co-precipitation method using APDC for TXRF analysis was used for the determination of Ni, Cu, Zn, and Pb elements in both matrices. As a result, the improved XRF and TXRF methods were applied for multi-element determination of elements in whole blood and human hair samples in non-occupational exposed population living in Damascus city. The mean concentrations of analyzed elements in both matrices were on the reported range values for non-occupational population in other countries.  相似文献   

17.
There is a growing interest in determination of low Z elements, i.e. carbon to phosphorus, in various samples. Total reflection X-ray fluorescence spectrometry (TXRF) has been already established as a suitable trace element analytical method with low sample demand and quite good quantification limits. Recently, the determinable element range was extended towards Z = 6 (carbon).  相似文献   

18.
Phytoremediation is an emerging technology that employs the use of higher plants for the clean-up of contaminated environments. Progress in the field is however handicapped by limited knowledge of the biological processes involved in plant metal uptake, translocation, tolerance and plant–microbe–soil interactions; therefore a better understanding of the basic biological mechanisms involved in plant/microbe/soil/contaminant interactions would allow further optimization of phytoremediation technologies. In view of the needs of global environmental protection, it is important that in phytoremediation and plant biology studies the analytical procedures for elemental determination in plant tissues and soil should be fast and cheap, with simple sample preparation, and of adequate accuracy and reproducibility. The aim of this study was therefore to present the main characteristics, sample preparation protocols and applications of X-ray fluorescence-based analytical techniques (energy dispersive X-ray fluorescence spectrometry—EDXRF, total reflection X-ray fluorescence spectrometry—TXRF and micro-proton induced X-ray emission—micro-PIXE). Element concentrations in plant leaves from metal polluted and non-polluted sites, as well as standard reference materials, were analyzed by the mentioned techniques, and additionally by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). The results were compared and critically evaluated in order to assess the performance and capability of X-ray fluorescence-based techniques in phytoremediation and plant biology studies. It is the EDXRF, which is recommended as suitable to be used in the analyses of a large number of samples, because it is multi-elemental, requires only simple preparation of sample material, and it is analytically comparable to the most frequently used instrumental chemical techniques. The TXRF is compatible to FAAS in sample preparation, but relative to AAS it is fast, sensitive and multi-elemental. The micro-PIXE technique requires rather expensive instrumentation, but offers multi-elemental analysis on the tissue and cellular level.  相似文献   

19.
Nikolai Alov 《Analytical letters》2018,51(11):1789-1795
Novel rapid determination of copper-zinc ore elemental composition by total reflection X-ray fluorescence (TXRF) is proposed. Approaches for solid state sample analysis by TXRF are provided. The sample preparation is chosen to obtain the suspensions in ethylene glycol. The optimum suspension preparation conditions (sample mass, volume of dispersion medium) and the measurement conditions (internal standard element, spectra acquisition time) were determined. The sedimentation stability of suspensions was studied. It was found that the suspensions remain stable for approximately 2?min, which is sufficiently long for the sampling the suspension. The proposed technique allows determining the elemental composition of solid ore samples without sample digestion. The sample preparation time takes approximately 20?min. The relative standard deviation of the analytical results did not exceed 10%.  相似文献   

20.
At present, there is a considerable interest in Hg monitoring in wastewater samples due to its widespread occurrence and the high toxicity of most of its compounds. Hg determination in water samples by means of total reflection X-ray fluorescence spectrometry (TXRF) entails some difficulties due to the high vapor pressure and low boiling point of this element that produce evaporation and loss of Hg from the surface of the reflector during the drying process, commonly used for sample preparation in TXRF analysis.The main goal of the present research was to develop a fast and simple chemical strategy to avoid Hg volatilization during the analysis of wastewater samples by TXRF spectrometry. Three different analytical procedures were tested for this purpose: (i) increasing the viscosity of the wastewater sample by adding a non-ionic surfactant (Triton® X-114), (ii) Hg immobilization on the quartz reflectors using the extractant tri-isobutylphosphine (Cyanex 471X) and (iii) formation of a stable and non-volatile Hg complex into the wastewater sample. The best analytical strategy was found to be the formation of a Hg complex with thiourea (pH = 10) before the deposition of 10 μL of sample on the reflector for following TXRF analysis. Analytical figures of merit such as linearity, limits of detection, accuracy and precision were carefully evaluated. Finally, the developed methodology was applied for the determination of Hg in different types of wastewater samples (industrial effluents, municipal effluents from conventional systems and municipal effluents from constructed wetlands).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号