首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Relative densities and massic heat capacities have been measured for acidified aqueous solutions of YCl3(aq), YbCl3(aq), DyCl3(aq), SmCl3(aq), and GdCl3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa. These measurements have been used to calculate experimental apparent molar volumes and heat capacities which, when used in conjunction with Young’s rule, were used to calculate the apparent molar properties of the aqueous chloride salt solutions. The latter calculations required the use of volumetric and thermochemical data for aqueous solutions of hydrochloric acid that have been previously reported in the literature. The concentration dependences of the apparent molar properties have been modeled using Pitzer ion interaction equations to yield apparent molar volumes and heat capacities at infinite dilution. The temperature and concentration dependences of the apparent molar volumes and heat capacities of each trivalent salt system were modeled using modified Pitzer ion interaction equations. These equations utilized the revised Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences of apparent molar volumes and heat capacities at infinite dilution. Calculated apparent molar volumes and heat capacities at infinite dilution have been used to calculate single ion properties for the investigated trivalent metal cations. These values have been compared to those previously reported in the literature. The differences between single ion values calculated in this study and those values calculated from thermodynamic data for aqueous perchlorate salts are also discussed.  相似文献   

2.
The specific heat capacities of hexamethylphosphoric triamide, diethylpropionamide, their aqueous solutions, and mixtures of hexamethylphosphoric triamide with formamide were measured in the temperature range from 288.15 to 318.15 K. The dependences of the partial molar heat capacity of aqueous solutions of amides on the composition of the mixture have maxima in the region of 0.02–0.04 molar fractions of amide. The maximum on a similar dependence for solutions of hexamethylphosphoric triamide corresponds to the concentration of 0.01 molar fractions. The conclusion on the formation of solvates (hydrates) in the systems studied was made. The heat capacity coefficients of pair and triple interactions were calculated in terms of the McMillan-Mayer theory. A change in the heat capacity characteristics with the temperature change was analyzed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2479–2483, December, 1998.  相似文献   

3.
The degree of association of biologically active mono-and disubstituted fullerene derivatives in aqueous solutions was studied using the diffusion method. The degree of association, which exerts a strong effect on the biological activity of the fullerene derivatives, depends mainly on the nature of the substituents and, to a less extent, on the concentration of the substance in solution. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2307–2311, December, 2007.  相似文献   

4.
Experimental data for aqueous solutions of 6,6,9-trimethyladenine at concentrations from 0.006 to 0.020 molal is provided from differential scanning adiabatic calorimetry, batch calorimetry, and densimetry. The data show nonlinear variations of apparent molar volumes and heat capacities with temperature and concentration. The properties of aqueous solutions of 6,6-dimethyladenine investigated over a similar range of concentration present similar behavior as those of other purine derivatives.  相似文献   

5.
Relative densities and relative massic heat capacities have been measured for the amino acids β-alanine, 4-aminobutanoic acid, d,l-norleucine and d,l-norvaline in dilute aqueous solution at p = 0.1 MPa and T = (288.15, 298.15, 313.15 and 328.15) K. Apparent molar volumes and apparent molar heat capacities have been calculated and the isothermal concentration dependences of these properties have been modeled to yield apparent molar properties at infinite dilution. Values for apparent molar properties at infinite dilution are compared to those previously reported in the literature. Trends in the temperature dependences of the infinite dilution properties are discussed in terms of methylene group contributions and the variations in these contributions caused by the presence of ionic end groups.  相似文献   

6.
The diffusion of fullerene derivatives of amino acids and peptides in dilute aqueous solutions has been studied. These derivatives can exist in solution both as separate molecules and as associates. The degree of association depends both on the nature of the amino acid or peptide residue and on the concentration of the solution.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 879–882, April, 1996.  相似文献   

7.
Acidified aqueous solutions of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa using a Sodev O2D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01  m/(mol · kg−1)  0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal Vφ,2 and Cpφ,2 values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p=0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature.Apparent molar volumes and apparent heat capacities at infinite dilution for the trivalent metal cations Pr3+(aq), Gd3+(aq), Ho3+(aq), and Tm3+(aq) were calculated using the conventions V2(H+(aq))  0 and Cp2(H+(aq))  0 and have been compared to other values reported in the literature.  相似文献   

8.
The dependences of the degree of association of water-soluble amino acid and peptide derivatives of fullerene[60] on pH and the ionic strength of a solution were studied by the diffusion method. The degree of association of alanine, serine, arginine, and alanylalanine derivatives of fullerene increases both in acidic and in alkaline media compared to the initial aqueous solution. Using arginine and alanylalanine derivatives of fullerene as an example, it was demonstrated that the degree of association also increases as the ionic strength of a solution increases.  相似文献   

9.
The forms of the concentration dependences of the excess molar heat capacities of 150 homogeneous binary solutions were analyzed. Limitations of the Wilson model as a tool for reproducing the local trends of these dependences, including those related to temperature changes, were revealed.  相似文献   

10.
The aqueous solutions of C60 fullerene derivatives were studied by means of dynamic light scattering, their effect on the peroxide oxidation of lipids (POL) in aqueous solutions was investigated via chemiluminescence method. It was shown that the colloidal solubility in water, which defines the antioxidant activity of C60 fullerene derivatives during POL, is controlled by the chemical structure of the addend added to C60 fullerene. For the studied derivatives, the direct dependence of the efficiency of POL inhibition on the lipophilicity was established.  相似文献   

11.
Association constants for solutions of electrolytes in N-methylpyrrolidone (MP) and the MP-water mixed solvent at 298.15 K are calculated. It is shown that, over a wide range of concentrations, concentration dependences of apparent molar heat capacities and apparent molar volumes of the electrolytes in MP and MP-water mixtures are described adequately in terms of equilibria between ions and ion pairs of a single type in the solution.  相似文献   

12.
Densities of itaconic acid aqueous solutions were measured at 5 K intervals from T = (278.15 to 343.15) K. From the determined densities, the apparent molar volumes, the cubic expansion coefficients and the second derivatives of volume with respect to temperature which are interrelated with the derivatives of isobaric heat capacities with respect to pressure were evaluated. These derivatives were qualitatively correlated with the changes in the structure of water when itaconic acid is dissolved in it.  相似文献   

13.
Densities and specific heat capacities of ternary aqueous systems containing dipeptides (glycyl-glycine or L--alanyl-L--alanine) and nucleic acid bases (cytosine or thymine) or their alkyl derivatives (1,3-diethylthymine or caffeine) were determined at 25°C by flow calorimetry and flow densimetry. The partial molar volumes and heat capacities of transfer at infinite dilution of the different nucleic acid bases from water to water+dipeptide solutions were obtained therefrom. Except for the case of the transfer of cytosine to aqueous glycyl-glycine solutions where a small positive dependence of the transfer quantities was observed with the dipeptide concentration, the values of the heat capacities of transfer were in general low, positive or negative, depending on the compensation of hydrophobic-hydrophilic interactions between the dipeptide and the base. The volumes of transfer of most of the bases are very small, within the limit of the experimental error.  相似文献   

14.
Apparent molar volumes (V 2,φ ) and heat capacities (C p2,φ ) of glycine in known concentrations (1.0, 2.0, 4.0, 6.0, and 8.0 mol⋅kg−1) of aqueous formamide (FM), acetamide (AM), and N,N-dimethylacetamide (DMA) solutions at T=298.15 K have been calculated from relative density and specific heat capacity measurements. These measurements were completed using a vibrating-tube flow densimeter and a Picker flow microcalorimeter, respectively. The concentration dependences of the apparent molar data have been used to calculate standard partial molar properties. The latter values have been combined with previously published standard partial molar volumes and heat capacities for glycine in water to calculate volumes and heat capacities associated with the transfer of glycine from water to the investigated aqueous amide solutions, D[`(V)]2,tro\Delta\overline{V}_{\mathrm{2,tr}}^{\mathrm{o}} and D[`(C)]p2,tro\Delta\overline{C}_{p\mathrm{2,tr}}^{\mathrm{o}} respectively. Calculated values for D[`(V)]2,tro\Delta\overline{V}_{\mathrm{2,tr}}^{\mathrm{o}} and D[`(C)]p2,tro\Delta\overline{C}_{p\mathrm{2,tr}}^{\mathrm{o}} are positive for all investigated concentrations of aqueous FM and AM solutions. However, values for D[`(C)]p2,tro\Delta\overline{C}_{p\mathrm{2,tr}}^{\mathrm{o}} associated with aqueous DMA solutions are found to be negative. The reported transfer properties increase with increasing co-solute (amide) concentration. This observation is discussed in terms of solute + co-solute interactions. The transfer properties have also been used to estimate interaction coefficients.  相似文献   

15.
The concentration dependences of proton magnetic relaxation (PMR) rates measured at different temperatures in aqueous electrolyte solutions and concentrated seawater (SW) in a wide range of salt concentrations and for different seawater salinities are presented, along with the concentration dependences of PMR rates determined in salts dissolved directly in seawater. The coordination numbers of the basic ions in seawater were determined from the complete solvation limits and compared with those measured in single-component water-salt solutions. The attaining of complete solvation limits was determined using the PMR data for ions of different hydration signs.  相似文献   

16.
In order to confirm the existence of regions I and II in aqueous solutions of butoxyethanol(BE), the concentration and temperature dependences of enthalpies of mixing of aqueous BE solutions with some organic solvents were measured. It has been found that the increments of apparent enthalpies of mixing per mole of water with respect to the mole fraction of BE change irregularly at a certain concentration. This concentration nearly corresponds to the reported boundary between regions I and II. Although similar behavior has also been observed in aqueous solutions of iso-butoxyethanol, aqueous solutions oftert-butoxyethanol have shown no anomalous behaviors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The paper presents the results of temperature dependence measurements for the rate of proton relaxation (1/T 1) in sea water with salinity 35‰ over the temperature range −22−+120°C at atmospheric pressure and in some salt solutions at two concentrations (0.5 and 1 mol/l). The possibility of approximating the temperature dependences of magnetic relaxation rates by various functions in pure water, sea water, and solutions of salts with various concentrations was studied. The parameters of these dependences and trends of their variations under the influence of salt components are reported. The most well grounded method for the functional representation of the temperature dependences of 1/T 1 is the use of the sum of exponents with the number of terms depending on solution concentration. This representation takes into account structural changes in solutions as the concentration grows and corresponds to the Frenkel model of the thermal motion of molecules in aqueous solutions of electrolytes. The combined use of the parameters of the temperature dependences of the rate of relaxation represented by various functions can be a mutually augmenting method for studying the dynamic properties of aqueous solutions of electrolytes with low and moderate concentrations.  相似文献   

18.
The concentration dependences of densities of fullerene C70 solutions in benzene, toluene, and p-xylene were determined pycnometrically.  相似文献   

19.
The partial molal heats of solution at infinite dilution of 1,4-bis(triethylammonium)butane dibromide and 1,10-bis(triethylammonium)decane dibromide in aqueous urea (up to 8m urea) have been determined calorimetrically in the temperature range 18–33°C. These data have been used to derive the partial molal heat capacities at infinite dilution, the enthalpies of transfer, and heat capacities of transfer at infinite dilution from water to urea-water solutions. The results show that the enthalpies of transfer are negative and decrease with increasing urea concentrations. The heat capacities of transfer are negative at low urea concentrations and increase in magnitude at higher urea concentrations. In the case of the smaller cation the partial molal heat capacity in 8m aqueous urea solution is greater than in pure water. The results are discussed in terms of structural changes in the solvents on dissolution.  相似文献   

20.
The densities, heat capacities, and dilution enthalpies ofn-pentanol+2-methyl-2-butanol mixtures have been measured, in many cases as a function of temperature, over the complete mole fraction range. Excesses thermodynamic properties, apparent and partial molar heat capacities, volumes and expansibilities were derived. The concentration and temperature dependences of these functions are discussed in terms of the variations of the structure of the system caused by the participation of the two alcohol molecules (with quite different steric hindrance of the alkyl chain around the-OH group) in the dynamic intermolecular association process through hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号