首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new ponderomotive effects in black hole physics are indicated: (i) the precession of the rotation axis of a charged black hole in an external magnetic field, (ii) the drift of a non-charged rotating hole in an asymmetric homogeneous electromagnetic field posessing a non-zero Poynting vector. The precession time for a black hole of solar mass with Q = 10?5M in a magnetic field B ~ 1012G is about a year.  相似文献   

2.
We have computed the energy ΔE, the momentum ΔP and the angular momentum ΔJ of gravitational radiation induced by a particle of mass μ and angular momentum μLz plunging into a Schwarzschild black hole of mass M (?μ). It is found that the maximum value of ΔP is 4.5 × 10?2 (μ/M) μc, ΔE/ΔJ ≈ 0.15c/(GM/c2), and a rotating ring plunging into a black hole emits less energy than a non-rotating one.  相似文献   

3.
We have computed the spectrum and the energy of gravitational radiation induced by a test particle of mass μ falling along the z-axis into a Kerr black hole of mass M(? μ) and angular momentum Ma(a < M). It is found that the total energy radiated is 0.0170 0.0170 μc2μM when α = 0.99M, which is 1.65 times larger than that when α = 0, i.e., the Schwarzschild black hole case.  相似文献   

4.
The analytic solution of a static spherical symmetrical Proca black hole is discussed in this paper. As in the massive vector field, Proca black hole can be considered as the analogy of RN background plus a perturbation with the same order as μ 2 due to the mass of vector particle μ satisfying μ 2 ? 1. Through the action of Proca field, we find the analytic form with the first and arbitrary order approximation. Furthermore, we divide the results into 3 groups according to the real zero solutions of the background (i.e., spacetime in massless vector field). Finally we analyze the Hawking radiation of such black hole, which is significant for constructing black hole thermodynamic.  相似文献   

5.
《Nuclear Physics B》1995,451(3):677-695
We discuss the most general effective Lagrangian obtained from the assumption that the degrees of freedom to be quantized, in a black hole, are on the horizon. The effective Lagrangian depends only on the induced metric and the extrinsic curvature of the (fluctuating) horizon, and the possible operators can be arranged in an expansion in powers of MP1/M, where MP1 is the Planck mass and M the black hole mass. We perform a semiclassical expansion of the action with a formalism which preserves general covariance explicitly. Quantum fluctuations over the classical solutions are described by a single scalar field living in the (2 + 1)-dimensional world-volume swept by the horizon, with a given coupling to the background geometry. We discuss the resulting field theory and we compute the black hole entropy with our formalism.  相似文献   

6.
Electromagnetic scattering interactions between photons emanating from a Schwarzschild black hole and an incident charged particle should generate a repulsive force between the particle and black hole. The net scattering cross-section is calculated here as a function of the mass M of the black hole and the mass m of the particle for scenarios in which the particle is point-like and initially stationary, with proper energy ε=m, at some location far from the black hole. It follows from comparing the repulsive scattering force to the corresponding gravitational force that, in order for the particle to be drawn to the black hole, ε/Tbh must be greater than a certain lower bound that is of the order 10−3 for spin-1/2 or spin-0 particles with unit-charge. Although the scattering restriction is weaker than the requirement ε/Tbh?1 obtained independently from field-theoretic and thermodynamic treatments, the recurrence of a lower bound on the Boltzmann factor ε/Tbh in limitations on particle absorption suggests a physical unity whose nature is fundamentally thermodynamic.  相似文献   

7.
We have computed the energy ΔE, the momentum ΔP and the angular momentum ΔJ of gravitational radiation induced by a particle of mass μ and of zero orbital angular momentum plunging in the θ = π/2 plane into a Kerr black hole of mass M(?μ) and angular momentum Ma. It is found that ΔE for a = 0.99M is 4.45 × 10-22/M)c2, which is 4.27 times larger than that for the a = 0 case.  相似文献   

8.
In this paper, corrected entropy of a class of BTZ black holes, include charge and rotation, studied. We obtain corrected Bekenstein-Hawking entropy and find that effect of charge viewed at order A ?2, and effect of rotation viewed at order A ?6, therefore Q and J don’t have contribution in corrected entropy lower than the second order. We also write the first law of black hole thermodynamics for the case of charged rotating BTZ black hole.  相似文献   

9.
The crossing of the classical positive and negative energy states E+ and E? introduced by Christodoulou-Ruffini and interpreted within the framework of a relativistic quantum field theory by Deruelle and Ruffini, leads to a Klein paradox. It has been shown by Euler and Heisenberg that when the transmission coefficient T2 through the barrier between the E+ and E? states is small it is proportional to the probability of pair creation. Numerical computations show that, in the case of a small Kerr black hole (GM/c2 ??/muc), the probability of pair creation of particles of mass μ is maximum when E ~ ?Ω, where E is the energy of the created particles and Ω and M the angular velocity and the mass of the back hole.  相似文献   

10.
Motivated by Kerner and Man’s fermions tunneling method of dimension 4 black holes, in this paper, we further improve the analysis to investigate Hawking radiation of charged Dirac particles with spin 1/2 from general non-extremal rotating charged black holes with two parameters and a non-zero cosmological constant in minimal five-dimensional gauged supergravity. For space-times with different horizon topology and different dimensions, constructing a set of appropriate γ μ matrices for general covariant Dirac equation is an important technique for the fermion tunneling method. By introducing a set of appropriate matrices γ μ and employing the ansatz for the spin-up spinor field, we successfully recovered the tunneling probability of charged Dirac particles and the expected Hawking temperature of the black hole, which is exactly consistent with that obtained by other methods. Moreover, the fermion tunneling method can be directly applied to the other five-dimensional charged black holes, which strengthens the validity and power of the fermion tunneling method.  相似文献   

11.
In this paper, we examine the effect of dark matter to a Kerr black hole of mass m. The metric is derived using the Newman-Janis algorithm, where the seed metric originates from the Schwarzschild black hole surrounded by a spherical shell of dark matter with mass M and thickness Δrs. The seed metric is also described in terms of a piecewise mass function with three different conditions. Specializing in the non-trivial case where the observer resides inside the dark matter shell, we analyzed how the effective mass of the black hole environment affects the basic black hole properties. A high concentration of dark matter near the rotating black hole is needed to have considerable deviations on the horizons, ergosphere, and photonsphere radius. The time-like geodesic, however, shows more sensitivity to deviation even at very low dark matter density. Further, the location of energy extraction via the Penrose process is also shown to remain unchanged. With how the dark matter distribution is described in the mass function, and the complexity of how the shadow radius is defined for a Kerr black hole, deriving an analytic expression for Δrs as a condition for notable dark matter effects to occur remains inconvenient.  相似文献   

12.
The mass of a Schwarzschild black hole in equilibrium with black-body radiation is shown to undergo a random drift with a diffusion coefficient DM-3. This follows from the master equation for the radiation in a stochastically bistable system of a black hole in an isolating cavity.  相似文献   

13.
We study the accretion process in the thin disk around a rotating non-Kerr black hole with a deformed parameter and an unbound rotation parameter. Our results show that the presence of the deformed parameter ? modifies the standard properties of the disk. For the case in which the black hole is more oblate than a Kerr black hole, the larger deviation leads to the smaller energy flux, the lower radiation temperature and the fainter spectra luminosity in the disk. For the black hole with positive deformed parameter, we find that the effect of the deformed parameter on the disk becomes more complicated. It depends not only on the rotation direction of the black hole and the orbit particles, but also on the sign of the difference between the deformed parameter ?   and a certain critical value ?c?c. These significant features in the mass accretion process may provide a possibility to test the no-hair theorem in the strong-field regime in future astronomical observations.  相似文献   

14.
15.
We consider a charged five-dimensional Myers–Perry black hole in a uniform magnetic (test) field. Using the Komar mass formula, we calculate the total energy of the electromagnetic field within the truncation three-sphere for a five-dimensional rotating black hole with two equal-rotation parameters and two equal-magnetic field strengths. We show that the total electromagnetic energy takes the minimum value when the five-dimensional rotating black hole acquires a non-zero net electric charge Q.  相似文献   

16.
The possibility of converting a Reissner-Nordström black hole into a naked singularity by means of test particle accretion is considered. The dually charged Reissner-Nordström metric describes a black hole only when M2 > Q3 + P2. The test particle equations of motion are shown to allow test particles with arbitrarily large magnetic charge/mass ratios to fall radially into electrically charged black holes. To determine the nature of the final state (black hole or naked singularity) an exact solution of Einstein's equations representing a spherical shell of magnetically charged dust falling into an electrically charged black hole is studied. Naked singularities are never formed so long as the weak energy condition is obeyed by the infalling matter. The differences between the spherical shell model and an infalling point test particle are examined and discussed.  相似文献   

17.
We consider the bound states of the massive scalar field around a rotating black hole immersed in the asymptotically uniform magnetic field. In the regime of slow black hole rotation, the Klein–Gordon equation allows separation of variables. We show that the growth rate of the instability can be amplified a few times by the magnetic field. The effect occurs because the magnetic field adds the “effective mass” term B|m|B|m| to the scalar field potential for a Kerr black hole. In addition, and as a by-product, we discuss the behavior of the quasinormal modes for the magnetized rotating black holes.  相似文献   

18.
We have studied the decay ?1 → ?2 + γ for arbitrary like charged spin 12 leptons in a manner which is applicable to a large class of models. Our computations assume that this process is induced by one loop diagrams. When the leading effect is cancelled by a leptonic G.I.M. mechanism, we find an extremely large enhancement of O(MW4/ML4) in Λ(μ?e?+e+e?)/Λ(μ?e?+γ) if the intermediate lepton is charged.  相似文献   

19.
Gravitational synchrotron radiation is studied using the techniques of geometrical optics. It is found that the geometry of the Schwarzschild black hole creates a rotating searchlight effect, even for a source particle which radiates only during an infinitesimally brief interval of coordinate time. The period of rotation of the searchlight is shown to provide a measurement of the mass of the blackhole, since the period T is related to the mass M by T = 2π271/2 M for the Schwarzschild geometry and by T = 4πM for the extreme (a = M) Kerr geometry.  相似文献   

20.
We describe a process by which energy literally can be mined from a black hole. We argue that the only limit placed by fundamental considerations on the rate at which energy can be extracted from a black hole by this process isdE/dt ~ 1 in Planck unitsG = c = ? = 1. This is far greater than the ratedE/dt ~ 1/M2 at which the black hole spontaneously loses energy by Hawking radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号