首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The vapor phase CH stretching vibrational overtone spectra of tert-butylbenzene and tert-butyl chloride are measured in the Delta upsilon(CH) = 2-7 region, while the spectrum of tert-butyl iodide is recorded in the Delta upsilon(CH) = 2-6 region. The overtone spectrum of tert-butylbenzene is too complex to make detailed spectral assignments. Local mode frequencies, omega, and anharmonicities, omegax, are obtained for tert-butyl chloride and tert-butyl iodide. The torsional dependencies of the local mode frequency, delta(omega), and anharmonicity, delta(omega)(x), are calculated for the tert-butyl halides. Nonbonded, through-space intramolecular interactions are observed in the blue-shifting of sterically hindered CH oscillators. Scaling factors are presented for relating ab initio calculated local mode parameters to experimental values for alkyl CH oscillators. Fermi resonances are observed between local mode states and local mode/normal mode combination states in tert-butyl chloride and tert-butyl iodide. Vibrational overtone transition intensities are calculated in the range Delta upsilon(CH) = 3-9 using the harmonically coupled anharmonic oscillator (HCAO) model and ab initio dipole moment functions. The resultant HCAO intensities are compared to experimental intensities at Delta upsilon(CH) = 3.  相似文献   

2.
We have recorded the vibrational absorption spectrum of 1,1,1,2-tetrafluoroethane (HFC-134a) in the fundamental and first five CH-stretching overtone regions with the use of Fourier transform infrared, dispersive long-path, intracavity laser photoacoustic, and cavity ringdown spectroscopies. We compare our measured total oscillator strengths in each region with intensities calculated using an anharmonic oscillator local mode model. We calculate intensities with 1D, 2D, and 3D Hamiltonians, including one or two CH stretches and two CH stretches with the HCH bending mode, respectively. The dipole moment function is calculated ab initio with self-consistent-field Hartree-Fock and density functional theories combined with double- and triple-zeta-quality basis sets. We find that the basis set choice affects the total intensity more than the choice of the Hamiltonian. We achieve agreement between the calculated and measured total intensities of approximately a factor of 2 or better for the fundamental and first five overtones.  相似文献   

3.
Local mode frequencies, omega, and anharmonicities, omegax, are obtained from the delta upsilon(CH) = 2-7 spectral regions of 1,3,5,7-cyclooctatetraene (COT) and 1,1,1-trichloroethane. In 1,1,1-trichloroethane omega and omega x are used in conjunction with ab initio potential energy surfaces to calculate local mode anharmonicity-torsion coupling terms, delta(omega x), and frequency-torsion coupling terms, delta(omega). Blue-shifting of sterically hindered CH oscillators in 1,1,1-trichloroethane indicates nonbonded, through-space intramolecular interactions with Cl. Multiple, complex Fermi resonances are observed in 1,1,1-trichloroethane and in COT between local mode states and local mode/normal mode combination states. Intensities of vibrational overtone transitions are calculated in the range delta upsilon(CH) = 3-9 using ab initio dipole moment functions and the harmonically coupled anharmonic oscillator (HCAO) model. HCAO intensities are compared to experimental intensities at delta upsilon(CH) = 3.  相似文献   

4.
We have calculated frequencies and intensities of fundamental and overtone vibrational transitions in water and water dimer with use of different vibrational methods. We have compared results obtained with correlation-corrected vibrational self-consistent-field theory and vibrational second-order perturbation theory both using normal modes and finally with a harmonically coupled anharmonic oscillator local mode model including OH-stretching and HOH-bending local modes. The coupled cluster with singles, doubles, and perturbative triples ab initio method with augmented correlation-consistent triple-zeta Dunning and atomic natural orbital basis sets has been used to obtain the necessary potential energy and dipole moment surfaces. We identify the strengths and weaknesses of these different vibrational approaches and compare our results to the available experimental results.  相似文献   

5.
In a previous article we have introduced an alternative perturbation scheme to the traditional one starting from the harmonic oscillator, rigid rotator Hamiltonian, to find approximate solutions of the spectral problem for rotation-vibration molecular Hamiltonians. The convergence of our method for the methane vibrational ground state rotational energy levels was quicker than that of the traditional method, as expected, and our predictions were quantitative. In this second article, we study the convergence of the ab initio calculation of effective dipole moments for methane within the same theoretical frame. The first order of perturbation when applied to the electric dipole moment operator of a spherical top gives the expression used in previous spectroscopic studies. Higher orders of perturbation give corrections corresponding to higher centrifugal distortion contributions and are calculated accurately for the first time. Two potential energy surfaces of the literature have been used for solving the anharmonic vibrational problem by means of the vibrational mean field configuration interaction approach. Two corresponding dipole moment surfaces were calculated in this work at a high level of theory. The predicted intensities agree better with recent experimental values than their empirical fit. This suggests that our ab initio dipole moment surface and effective dipole moment operator are both highly accurate.  相似文献   

6.
The vibrational overtone spectrum of HOONO is examined in the region of the 2 nu(OH) and 3 nu(OH) bands using action spectroscopy in conjunction with ab initio intensity calculations. The present measurements indicate that the oscillator strength associated with the higher energy trans-perp conformer of HOONO is stronger relative to the lower energy cis-cis conformer for both these vibrational overtone levels. Ab initio intensity calculations carried out at the QCISD level of theory suggest that this disparity in oscillator strength apparently arises from differences in the second derivative of the transition dipole moment function of the two isomers. The calculations indicate that the oscillator strength for the trans-perp isomer is approximately 5.4 times larger than that of the cis-cis isomer for the 2 nu(OH) band and approximately 2 times larger for 3 nu(OH) band. The band positions and intensities predicted by the calculations are used to aid in the assignment of features in the experimental action spectra associated with the OH stretching overtones of HOONO. The observed relative intensities in the experimental action spectra when normalized to the calculated oscillator strengths appears to suggest that the concentration of the higher energy trans-perp isomer is comparable to the concentration of the cis-cis isomer in these room temperature experiments.  相似文献   

7.
We report here a measurement of electric dipole moments in highly vibrationally excited HDO molecules. We use photofragment yield detected quantum beat spectroscopy to determine electric field induced splittings of the J=1 rotational levels of HDO excited with 4, 5, and 8 quanta of vibration in the OH stretching mode. The splittings allow us to deduce mua and mub, the projections of dipole moment onto the molecular rotation inertial axes. We compare the measured HDO dipole moment components with the results of quantitative calculations based on Morse oscillator wave functions and an ab initio dipole moment surface. The vibrational dependence of the dipole moment components reflect both structural and electronic changes in HDO upon vibrational excitation; principally the vibrational dependence of the O-H bond length and bond angle, and the resulting change in orientation of the principal inertial coordinate system. The dipole moment data also provide a sensitive test of theoretical dipole moment and potential energy surfaces, particularly for molecular configurations far from equilibrium.  相似文献   

8.
The correlated, size-consistent, ab initio effective valence-shell dipole operator (μv) method is used to calculate dipole moments and transition dipole moments of the CH molecule and transition dipole moments of the CH+ ion as a function of internuclear distance. The dipole and transition dipole moments computed here compare well with those of other accurate ab initio methods. The transition dipole moments are then used to calculate oscillator strengths and radiative lifetimes for the AX and BA transitions of the CH+ ion and the AX transition of the CH molecule. Comparisons are made with the best available theoretical and experimental lifetimes. Finally, the CH ground-state dipole moment function is used to evaluate overtone intensities and to examine simple models of the CH overtone intensities in polyatomic molecules.  相似文献   

9.
The excited states and the absorption spectrum of the methylene amidogene radical are studied by high-level ab initio calculations. The multireference configuration interaction method was used in combination with different basis sets and basis set extrapolation to compute equilibrium geometries, harmonic frequencies, and excitation energies of the four lowest doublet electronic states of the title species. Potential curves and transition dipole moment functions were determined along the normal mode coordinates of the electronic ground state. These functions were employed to determine vibronic absorption spectra. The intensities of dipole forbidden but vibronically allowed transitions were calculated by explicitly evaluating integrals over the vibrational wave functions and the transition dipole functions of the involved electronic states. By this method the oscillator strengths of the dipole allowed (2)A(1)<--(2)B(2) and the dipole forbidden (2)B(1)<--(2)B(2) bands were computed. It turns out that the dipole forbidden transition is two orders of magnitude weaker than the dipole allowed one. The 0-0 excitation energies are found to be 30 256 cm(-1) for the (2)B(1) state and 34,646 cm(-1) for the (2)A(1) state. From the combined results of the excitation energies and oscillator strengths it is concluded that the experimentally observed peaks must be due to the (2)A(1) state, in contradiction to earlier assignments.  相似文献   

10.
We present a method to calculate near-infrared (NIR) and NIR-vibrational circular dichroism (NIR-VCD) spectra up to the second CH-stretching overtone region in the local mode approximation. Atomic polar tensors and atomic axial tensors are first evaluated by DFT methodology for all CH stretching coordinates with systematic positive and negative displacements off-equilibrium and therefrom anharmonic dipole moment functions are constructed by polynomial interpolations. No adjustable parameters are employed up to this point. Rotational and dipole strengths are finally calculated by evaluating transition moments of Morse-type wave-functions. The method is applied to the case of Camphor and Camphorquinone, for which relevant differences in the vibrational circular dichroism (VCD) data are observed, which are predicted by our approach. Further steps are still to be made for a more complete treatment: the ab initio evaluation of mechanical anharmonicity and the introduction of mechanical and electrical coupling between local modes.  相似文献   

11.
The O-H stretching vibrational overtone spectrum of the water dimer has been calculated with the dimer modeled as two individually vibrating monomer units. Vibrational term values and absorption intensities have been obtained variationally with a computed dipole moment surface and an internal coordinate Hamiltonian, which consists of exact kinetic energy operators within the Born-Oppenheimer approximation of the monomer units. Three-dimensional ab initio potential energy and dipole moment surfaces have been calculated using the internal coordinates of the monomer units using the coupled cluster method including single, double, and perturbative triple excitations [CCSD(T)] with the augmented correlation consistent valence triple zeta basis set (aug-cc-pVTZ). The augmented correlation consistent valence quadruple zeta basis set (aug-cc-pVQZ), counterpoise correction, basis set extrapolation to the complete basis set limit, relativistic corrections, and core and valence electron correlations effects have been included in one-dimensional potential energy surface cuts. The aim is both to investigate the level of ab initio and vibrational calculations necessary to produce accurate results when compared with experiment and to aid the detection of the water dimer under atmospheric conditions.  相似文献   

12.
We have calculated the frequencies and intensities of the hydrogen-bonded OH-stretching transitions in the water dimer complex. The potential-energy curve and dipole-moment function are calculated ab initio at the coupled cluster with singles, doubles, and perturbative triples level of theory with correlation-consistent Dunning basis sets. The vibrational frequencies and wavefunctions are found from a numerical solution to a one-dimensional Schr?dinger equation. The corresponding transition intensities are found from numerical integration of these vibrational wavefunctions with the ab initio calculated dipole moment function. We investigate the effect of counterpoise correcting both the potential-energy surface and dipole-moment function. We find that the effect of using a numeric potential is significant for higher overtones and that inclusion of a counterpoise correction for basis set superposition error is important.  相似文献   

13.
Vibrational spectra of vapor-phase dimethylamine (DMA) and pyrrole have been recorded in the 1000 to 13000 cm(-1) region using long path conventional spectroscopy techniques. We have focused on the absolute intensities of the NH-stretching fundamental and overtone transitions; Δν(NH) = 1-4 regions for DMA and the Δν(NH) = 1-3 regions for pyrrole. In the Δν(NH) = 1-3 regions for DMA, evidence of tunneling splitting associated with the NH-wagging mode is observed. For DMA, the fundamental NH-stretching transition intensity is weaker than the first NH-stretching overtone. Also, the fundamental NH-stretching transition in DMA is much weaker than the fundamental transition in pyrrole. We have used an anharmonic oscillator local mode model with ab initio calculated local mode parameters and dipole moment functions at the CCSD(T)/aug-cc-pVTZ level to calculate the NH-stretching intensities and explain this intensity anomaly in DMA.  相似文献   

14.
Full-dimensional ab initio potential-energy surface (PES) and dipole moment surface are constructed for a methane molecule at the CCSD(T)/cc-pVTZ and MP2/cc-pVTZ levels of theory, respectively, by the modified Shepard interpolation method based on the fourth-order Taylor expansion [MSI(4th)]. The reference points for the interpolation have been set in the coupling region of CH symmetric and antisymmetric stretching modes so as to reproduce the vibrational energy levels related to CH stretching vibrations. The vibrational configuration-interaction calculations have been performed to obtain the energy levels and the absorption intensities up to 9000 cm(-1) with the use of MSI(4th)-PES. The calculated fundamental frequencies and low-lying vibrational energy levels show that MSI(4th) is superior to the widely employed quartic force field, giving a better agreement with the experimental values. The absorption bands of overtones as well as combination bands, which are caused by purely anharmonic effects, have been obtained up to 9000 cm(-1). Strongly coupled states with visible intensity have been found in the 6500-9000 cm(-1) region where the experimental data are still lacking.  相似文献   

15.
The features of blue- and red-shifted electron acceptor-donor (ACH/B) hydrogen bonds have been compared by using quantum chemical calculations. The geometry, the interaction energy and the vibrational frequencies of both blue- (ACH=F3CH, Cl3CH with B=FCD3) and red-shifted (ACH=F3CH, Cl3CH with B=NH3 and ACH=CH3CCH with B=FCD3, NH3) complexes were obtained by using ab initio MP2(Full)/6-31+G(d,p) calculations with the a priori basis-set superposition error (BSSE) correction method. One-dimensional potential energy and dipole moment functions of the dimensionless normal coordinate Q1, corresponding to the CH stretching mode of ACH, have been compared for both types of complexes. Contributions of separate components of the interaction energy to the frequency shift and the effect of electron charge transfer were examined for a set of intermolecular distances by using the symmetry-adapted perturbation theory (SAPT) approach and natural bond orbitals (NBO) population analysis.  相似文献   

16.
The dynamics of van der Waals vibrational motions and vibronic spectrum of the complex of argon with p-difluorobenzene (ArDFB) are investigated using the ab initio method. The electronic ground-state potential-energy surface of the complex is calculated at the second-order M?ller-Plesset level of theory using a well-balanced basis set aug-cc-pVDZ and its reduced version without tight polarization functions. The dissociation energy of 351 cm(-1) and the binding energy of 402 cm(-1) determined at the Ar distance of 3.521 Angstroms from the DFB ring well agree with the experimental data available. The character of calculated vibrational levels is analyzed and the effect of a strong coupling between the stretching and bending motions is investigated. A new class of hybrid states created by this coupling is found. To investigate the vibronic S(1)-S(0) spectrum, the surfaces of the electronic transition dipole moment are calculated using the ab initio method. From these surfaces, the vibronic transition intensities are determined and employed to assign the Franck-Condon- and Herzberg-Teller-induced transitions.  相似文献   

17.
Charged terminal groups or polar side chains of amino acids create spatially nonuniform electrostatic potential around intramolecular peptide bonds and induce amide I mode frequency shifts in polypeptides. By carrying out a series of quantum chemistry calculation studies of various ionic di- and tripeptides as well as dipeptides of 20 different amino acids, these internal field effects on vibrational properties are theoretically investigated. The amide I local and normal mode frequencies and dipole and rotational strengths determining IR and vibrational circular dichroism intensities, respectively, are found to depend on the polar nature of side chains, whereas the vibrational coupling strength weakly does so. The empirical correction and fragment analysis methods were used to theoretically calculate the amide I local mode frequencies and dipole and rotational strengths. These values were directly compared with ab initio and density functional theory calculation results, and the agreements were found to be quantitative.  相似文献   

18.
The vibrational spectra of SiH2Cl2 have been recorded in the 1000-13,000 cm(-1) region, utilizing the Fourier-transform spectroscopy and Fourier-transform intracavity laser absorption spectroscopy. Totally 61 band centers and intensities are derived from the infrared spectra. An ab initio quartic force field is obtained by applying the second-order Moller-Plesset perturbation theory and correlation-consistent polarized valence triplet-zeta basis sets [J. Chem. Phys. 90, 1007 (1989); 98, 1358 (1993)]. Most observed bands are assigned by the vibration analysis based on the second-order perturbation theory. Reduced-dimensional ab initio dipole moment functions (two dimensional and three dimensional) have also been calculated to investigate the absolute band intensities of the SiH2 chromophore. The calculated values agree reasonably with the observed ones.  相似文献   

19.
A one-dimensional local bend model is used to describe the variation of electronic properties of acetylene in vibrational levels that embody large amplitude local motions on the S0 potential energy surface. Calculations performed at the CCSD(T) and MR-AQCC levels of theory predict an approximately linear dependence of the dipole moment on the number of quanta in either the local bending or local stretching excitation. In the local mode limit, one quantum of stretching excitation in one CH bond leads to an increase of 0.025 D in the dipole moment, and one quantum of bending vibration in the CCH angle leads to an increase of 0.068 D. The use of a one-dimensional model for the local bend is justified by comparison to the well-established polyad model which reveals a decoupling of the large amplitude bending from other degrees of freedom in the range of Nbend = 14-22. We find that the same one-dimensional large amplitude bending motion emerges from two profoundly different representations, a one-dimensional cut through an ab initio, seven-dimensional Hamiltonian and the three-dimensional (l = 0) pure-bending experimentally parametrized spectroscopic Hamiltonian.  相似文献   

20.
We report a full dimensional, ab initio based potential energy surface for CH(5) (+). The ab initio electronic energies and gradients are obtained in direct-dynamics calculations using second-order M?ller-Plesset perturbation theory with the correlation consistent polarized valence triple zeta basis. The potential energy and the dipole moment surfaces are fit using novel procedures that ensure the full permutational symmetry of the system. The fitted potential energy surface is tested by comparing it against additional electronic energy calculations and by comparing normal mode frequencies at the three lowest-lying stationary points obtained from the fit against ab initio ones. Well-converged diffusion Monte Carlo zero-point energies, rotational constants, and projections along the CH and HH bond lengths and the tunneling coordinates are presented and compared with the corresponding harmonic oscillator and standard classical molecular dynamics ones. The delocalization of the wave function is analyzed through comparison of the CH(5) (+) distributions with those obtained when all of the hydrogen atoms are replaced by (2)H and (3)H. The classical dipole correlation function is examined as a function of the total energy. This provides a further probe of the delocalization of CH(5) (+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号