首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single crystals of melaminium perchlorate monohydrate (MPM) have been grown from aqueous solution by slow solvent evaporation method at room temperature. X-ray powder diffraction analysis confirms the title crystal crystallizes in the triclinic (P-1) structure and the calculated lattice parameters are a = 5.6275 ± 0.0780 Å, b = 7.6926 ± 0.1025 Å, c = 12.0878 ± 0.2756 Å, α = 103.89 ± 1.01°, β = 94.61 ± 0.92°, γ = 110.22 ± 0.81°, and V = 468.95 Å3. The thermal decomposition behavior of MPM has been studied by means of thermogravimetric analysis at three different heating rates 5, 10, and 20 °C min?1. The values of effective activation energy (E a), pre-exponential factor (ln A) of each stage of thermal decomposition for all heating rates were calculated by model free method: Kissinger, Kim–Park, and Flynn–Wall method. A significant variation of effective activation energy (E a) with conversion (α) indicates that the process is kinetically complex. The linear relationship between the A and E a values was established (compensation effect). Dielectric study has also been carried out and it is found that both dielectric constant (ε′) and dielectric loss (ε″) decreases with increase in frequency.  相似文献   

2.
New semi-organic bis(thiourea)silver(I)nitrate (TuAgN) single crystals have been grown from slow evaporation solution growth technique. Single crystal X-ray diffraction study reveals that the crystal belongs to orthorhombic system with the non-centrosymmetric space group C2221 and the calculated cell parameters are a = 33.3455 (6) Å, b = 45.2957 (7) Å, c = 20.3209 (5) Å, α = β = γ = 90°, and V = 30692.8 (10) Å 3. The thermal stability and decomposition behavior of TuAgN compound have been studied by thermogravimetric analysis at three different heating rates 5, 10, and 15 °C min?1. The effective activation energy (E a) and pre-exponential factor (ln A) of thermal decomposition of thiourea from TuAgN compound at three different heating rates are estimated by model free methods: Arrhenius, Flynn–Wall, Kissinger, and Kim–Park. The calculated effective activation energies were found to vary with the fraction (α) reacted. The compensation effect between the (ln A) and (E a) has also been studied. Dielectric properties of TuAgN crystal have been studied in a wide range of frequencies and temperatures. AC conductivity has also been carried out.  相似文献   

3.
Single crystals of melaminium bis (hydrogen oxalate) (MOX) single crystals have been grown from aqueous solution by slow solvent evaporation method at room temperature. X-ray powder diffraction analysis confirms that MOX crystallises in monoclinic system with space group C2/c. The calculated lattice parameters are a = 20.075 ± 0.123 Å b = 8.477 ± 0.045 Å, c = 6.983 ± 0.015 Å, α = 90°, β = 102.6 ± 0.33°, γ = 90° and V = 1,159.73 (Å)3. Thermogravimetric analysis at three different heating rates 10, 15 and 20 °C min?1 has been done to study the thermal decomposition behaviour of the crystal. Non-isothermal studies on MOX reveal that the decomposition occurs in two stages. Kinetic parameters [effective activation energy (E a), pre-exponential factor (ln A)] of each stage were calculated by model-free method: Kissinger, Kim–Park and Flynn–Wall method and the results are discussed. A significant variation in effective activation energy (E a) with conversion progress (α) indicates that the process is kinetically complex. The linear relationship between the ln A and E a was established (compensation effect). DTA analyses were conducted at different heating rates and the activation energy was determined graphically from Kissinger and Ozawa equation. The average effective activation energy is calculated as 276 kJ mol?1 for the crystallization peak. The Avrami exponent for the crystallization peak temperature determined by Augis and Bennett method is found to be 1.95. This result indicates that the surface crystallization dominates overall crystallization. Dielectric study has also been done, and it is found that both dielectric constant and dielectric loss decreases with increase in frequency and is almost a constant at high frequency region.  相似文献   

4.
The propulsion of most of the operating satellites comprises monopropellant (hydrazine––N2H4) or bipropellant (monometilydrazine—MMH and nitrogen tetroxide) chemical systems. When some sample of the propellant tested fails, the entire sample lot shall be rejected, and this action has turned into a health problem due to the high toxicity of N2H4. Thus, it is interesting to know hydrazine thermal behavior in several storage conditions. The kinetic parameters for thermal decomposition of hydrazine in oxygen and nitrogen atmospheres were determined by Capela–Ribeiro nonlinear isoconversional method. From TG data at heating rates of 5, 10, and 20 °C min?1, kinetic parameters could be determined in nitrogen (E = 47.3 ± 3.1 kJ mol?1, lnA = 14.2 ± 0.9 and T b = 69 °C) and oxygen (E = 64.9 ± 8.6 kJ mol?1, lnA = 20.7 ± 3.1 and T b = 75 °C) atmospheres. It was not possible to identify a specific kinetic model for hydrazine thermal decomposition due to high heterogeneity in reaction; however, experimental f(α)g(α) master-plot curves were closed to F 1/3 model.  相似文献   

5.
The kinetics of thermal decomposition of NH4CuPO4·H2O was studied using isoconversional calculation procedure. The iterative isoconversional procedure was applied to estimate the apparent activation energy E a; the values of apparent activation energies associated with the first stage (dehydration), the second stage (deamination), and the third stage(condensation) for the thermal decomposition of NH4CuPO4·H2O were determined to be 117.7 ± 7.7, 167.9 ± 8.4, and 217.6 ± 45.5 kJ mol?1, respectively, which demonstrate that the third stage is a kinetically complex process, and the first and second stages are single-step kinetic processes and can be described by a unique kinetic triplet [E a, A, g(α)]. A new modified method of the multiple rate iso-temperature was used to define the most probable mechanism g(α) of the two stages; and reliability of the used method for the determination of the kinetic mechanism were tested by the comparison between experimental plot and model results for every heating rate. The results show that the mechanism functions of the two stages are reliable. The pre-exponential factor A of the two stages was obtained on the basis of E a and g(α). Besides, the thermodynamic parameters (ΔS , ΔH , and ΔG ) of the two stages were also calculated.  相似文献   

6.
The decomposition kinetics of glycerol diglycidyl ether (GDE)/3,3-dimethylglutaric anhydride/nanoalumina composite have been investigated by thermogravimetry analysis under nonisothermal mode. The activation energy, E a, of the solid-state decomposition process was evaluated using the advanced isoconversional method. From the experimental data, the dependence of conversion on temperature and activation energy was constructed allowing calculating the master plots. Our results showed that the decomposition mechanism at temperatures below 400 °C could be fitted by R2 kinetic model with E = 143 kJ mol?1. The information about the kinetic parameters based only on thermal degradation data has been used for quick lifetime estimation at different temperatures. The Vyazovkin method was also employed to predict the times to reach α = 0.5 at isothermal mode using the activation energy calculated by the advanced isoconversional approaches. Scanning electron microscopy (SEM) analysis was carried out to investigate the fracture surface morphology. It was revealed from the SEM images that the presence of nanoalumina results in reinforcement of GDE matrix.  相似文献   

7.
The conformational preference of the methyl group of 1-methyl-1-germacyclohexane was studied experimentally in solution (low-temperature 13C NMR) and by quantum chemical calculations (CCSD(T), MP2 and DFT methods). The NMR experiment resulted in an axial/equatorial ratio of 44/56 mol% at 114 K corresponding to an A value (A = G ax G eq) of 0.06 kcal mol?1. An average value for ΔG e→a #  = 5.0 ± 0.1 kcal mol?1 was obtained for the temperature range 106–134 K. The experimental results are very well reproduced by the calculations. CCSD(T)/CBS calculations + thermal corrections resulted in an A value of 0.02 kcal mol?1, whereas a ΔE value of ?0.01 kcal mol?1 at 0 K was obtained.  相似文献   

8.
1,3-Bis(4-aminophenoxy)benzene (TPER) and poly(amic acid) based on TPER and pyromellitic dianhydride (PMDA) were synthesized. After imidization of the poly(amic acid), polyimide based on TPER and PMDA was obtained. The melting process and the specific heat capacity (C p) of TPER were examined by DSC and microcalorimetry, respectively. The melting enthalpy, the melting entropy, and the C p for TPER were obtained. The enthalpy change, the entropy change, and the Gibbs free energy change for TPER were obtained within 283 and 353 K. The thermal decomposition reaction mechanism of the polyimide is classified from the TG–DTG experimental data, and the thermokinetic parameters of the thermal decomposition reaction are E a = 296.87 kJ mol?1and log (A/s?1) = 14.41.  相似文献   

9.
The kinetics of the thermal degradation of Japanese lacquer (urushi) films in N2 and in air were studied by means of thermogravimetry (TG). Thermogravimetric and derivative thermogravimetric curves indicated that the degradation occurred in three stages. The atmosphere influenced the apparent activation energies (E a) of the three degradation stages. The activation energies (E a) for the first stage in N2 and air, obtained from the TG curve, were 19.12 and 10.19 kcal mol?1, respectively, and the corresponding pre-exponential factors (A) were 6.18 × 105 and 1.24 × 102 min?1 for 1-year-old urushi films.  相似文献   

10.
In this study, the thermal behavior in terms of glass transition (T g), degradation, and thermal stability of four commercial new-generation posterior bulk fill composites (Surefill SDR, Dentsply; Quixfill, Dentsply; Xtrabase, Voco; and Xtrafill, Voco) activated by light-emitting diodes (LEDs) was analyzed by thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The activation energies (E a) for the decomposition of the dental resins were calculated based on the Kissinger and Doyle kinetic models from the peaks of the endothermic curves obtained when the specimens were heated at four different temperatures (5, 10, 15, and 20 °C min?1) during DSC. The results show that the Xtrabase composite displayed the highest T g (120 °C at a 5 °C min?1 heating rate) and E a (157.64 kJ mol?1) values associated with thermal degradation from the main chain of the polymer.  相似文献   

11.
A novel complex [Ni(H2O)4(TO)2](NO3)2·2H2O (TO = 1,2,4-triazole-5-one) was synthesized and structurally characterized by X-ray crystal diffraction analysis. The decomposition reaction kinetic of the complex was studied using TG-DTG. A multiple heating rate method was utilized to determine the apparent activation energy (E a) and pre-exponential constant (A) of the former two decomposition stages, and the values are 109.2 kJ mol?1, 1013.80 s?1; 108.0 kJ mol?1, 1023.23 s?1, respectively. The critical temperature of thermal explosion, the entropy of activation (ΔS ), enthalpy of activation (ΔH ) and the free energy of activation (ΔG ) of the initial two decomposition stages of the complex were also calculated. The standard enthalpy of formation of the new complex was determined as being ?1464.55 ± 1.70 kJ mol?1 by a rotating-bomb calorimeter.  相似文献   

12.
A series of silica-supported nickel catalyst precursors was synthesized with different SiO2/Ni mole ratios (0.20, 0.80 and 1.15). Non-isothermal reduction of Ni catalyst precursors was investigated by temperature-programmed reduction at four different heating rates (2, 5, 10 and 20 °C min?1), in a hydrogen atmosphere. Kinetic parameters (E a, A) were determined using Friedman isoconversional method. It was found that for all mole ratios, apparent activation energy is practically constant in conversion range of α = 30–70 %. In considered conversion range, the following values of apparent activation energy were found: E a = 129.5 kJ mol?1 (SiO2/Ni = 0.20), E a = 133.8 kJ mol?1 (SiO2/Ni = 0.80) and E a = 125.0 kJ mol?1 (SiO2/Ni = 1.15). Using two special functions (y(α) and z(α)), the kinetic model was determined. It was established that reduction of Ni catalyst precursors with different SiO2/Ni mole ratios is a complex process and can be described by two-parameter ?esták–Berggren (SB) autocatalytic model. Based on established values of SB parameters for each mole ratio, the possible mechanism was discussed. It was found that for all investigated ratios, the Weibull distribution function fits very well the experimental data, in the wide range of conversions (α = 5–95 %). Based on obtained values of Weibull shape parameter (θ), it was found that experimentally evaluated density distribution functions of the apparent activation energies can be approximated by the unbalanced peaked normal distribution.  相似文献   

13.
In this study, the thermal decompositions of nickel composite fibers (NCF) under different atmospheres of flowing nitrogen and air were investigated by XRD, SEM–EDS, and TG–DTG techniques. Non-isothermal studies indicated that only one mass loss stage occurred over the temperature regions of 298–1,073 K in nitrogen. The mass loss was from the decomposition. But after this decomposition, nickel was oxidized in air, when the temperature was high enough. In nitrogen media, the model-free kinetic analysis method was applied to calculate the apparent activation energy (E a) and pre-exponential factor (A). The method combining Satava–?esták equation with one TG curve was used to select the suitable mechanism functions from 30 typical kinetic models. Furthermore, the Coats–Redfern method was used to study the NCF decomposition kinetics. The study results showed that the decomposition of NCF in nitrogen media was controlled by three-dimension diffusion; mechanism function was the anti-Jander equation, the apparent activation energy (E a) and the pre-exponential factor (A) were 172.3 kJ mol?1 and 2.16 × 109 s?1, respectively. The kinetic equation could be expressed as following: $$ \frac{{{\text{d}}\alpha }}{{{\text{d}}T}} = \frac{{ 2. 1 6\times 1 0^{ 9} }}{\beta }{ \exp }\left( {\frac{ - 2 0 7 2 4. 1}{T}} \right)\left\{ {\frac{ 3}{ 2}(1 + \alpha )^{2/3} [(1 + \alpha )^{1/3} - 1]^{ - 1} } \right\}. $$   相似文献   

14.
Synthesis, characterization and thermal analysis of polyaniline (PANI)/ZrO2 composite and PANI was reported in our early work. In this present, the kinetic analysis of decomposition process for these two materials was performed under non-isothermal conditions. The activation energies were calculated through Friedman and Ozawa-Flynn-Wall methods, and the possible kinetic model functions have been estimated through the multiple linear regression method. The results show that the kinetic models for the decomposition process of PANI/ZrO2 composite and PANI are all D3, and the corresponding function is ƒ(α)=1.5(1−α)2/3[1−(1-α)1/3]−1. The correlated kinetic parameters are E a=112.7±9.2 kJ mol−1, lnA=13.9 and E a=81.8±5.6 kJ mol−1, lnA=8.8 for PANI/ZrO2 composite and PANI, respectively.  相似文献   

15.
The kinetics and mechanism of cure reaction of DGEBA using a chelate of Ni(II) with diethylenetriamine (dien), Ni(dien)2I2, as a curing agent was studied by DSC. TG curve of the complex curing agent showed mass loss in two region of temperature: 200–320 and 450–550 °C. Dynamic DSC measurements showed only one exothermic peak with a maximum about 250 °C depending on the heating rate. According to the methods of KAS and Ozawa–Flynn–Wall the values of E a were 92.5 and 96.2 kJ/mol, respectively. The isoconversional kinetic analysis in whole range of conversion, α = 0.02–0.95, showed small changes in the E a values in the region of α = 0.04–0.6 and most likely represent some average values (E a = 110 kJ/mol) between the values of E a of non-autocatalyzed and autocatalyzed reactions. Using the sole dependence of E a on α, the time required to reach fully cured materials under isothermal conditions were also predicted and compared with the experimental results.  相似文献   

16.
The thermal decomposition characteristics and thermal sensitivity are key indicators for reflecting the thermal stability of explosives in storage and application. The thermal decompositions in different degrees are used to determine the dominant factor which controls the thermal stability of composite explosive. Four kinds of RDX-based aluminized explosives are marked as RA1, RA2, RA3, and RA4 with the Al content increasing from 10 to 40 mass%. The initial thermal decomposition behaviors were studied by DPTA and the complete thermal decompositions were studied by DSC and TG. The thermal sensitivities were characterized by 5-s explosion point. The effects of micron-sized Al particles and their contents on thermal decomposition were investigated. The evolved gas amount (V i) from DPTA test follows RA3 < RA4 < RA2 < RA1, indicating that RA3 has the best thermal stability at ambient storage conditions. However, according to TG and DSC tests, the characteristic temperatures of thermal decomposition (T p, T b, and T SADT), the thermodynamic parameters (?H e, ?S , and ?H ), the kinetic parameters (E a and A), and the 5-s explosion points all follow RA4 < RA3 < RA2 < RA1. The results indicate that the Al particles play different roles in the different degrees of thermal decomposition. In the initial decomposition, the Al particles have not been activated and are considered as inert materials that hinder the decomposition of explosive. In the complete decomposition, the Al particles catalyze the thermal decomposition, and such catalysis becomes more obvious as the Al content increases to a certain degree.  相似文献   

17.
Thermal decomposition measurements for lithium borohydride (LiBH4) are performed at non-isothermal and non-equilibrium conditions by means of differential thermal analysis (DTA). A simplified alternative procedure is introduced for evaluating thermodynamic and kinetic parameters simultaneously using a single set of measurements. Rate constant (k) and enthalpy (ΔH = ?102.1 ± 0.7 kJ mol?1 LiBH4) are archived. Temperature dependence for activation energy (E a) is found taking advantage of Guggenheim–Arrhenius method; the mean activation energy is $ \overline{E}_{a} $  93.9 ± 0.9 kJ mol?1 LiBH4 in the range of heating rate β 1–50 K min?1.  相似文献   

18.
Leachate samples from a sanitary landfill of Araraquara city and composting usine of Vila Leopoldina, São Paulo, Brazil were lyophilized to remove the water content. TG/DTG curves at different heating rates were recorded. The second step of the thermal decomposition of leachate from the Araraquara landfill (CB1), from the composting usine from Vila Leopoldina (CB2) from the organic phase extracted (FO) and aqueous phase (FA) were all kinetically evaluated using the non-isothermal method.By Flynn-Wall isoconversional method the following values were obtained: E=234±3.65 kJ mol?1 and logA=29.7±0.58 min?1 for CB1; E=129±1.66 kJ mol?1 and logA=11.8±0.10 min?1 for CB2; E=51.6±1.35 kJ mol?1 and logA=6.09±0.09 min?1 for FO and E=76.91±6.33 kJ mol?1 and logA=8.88±0.7 min?1 for FA with 95% confidence level. Applying the procedures of Málek and Koga, SB kinetic model (?esták-Berggren) is the most appropriate to describe the decomposition of CB1, CB2, FO and FA.  相似文献   

19.
Processes involving gold(I) complexes were studied in sulfite–thiourea (TU) solutions. It is shown that at pH >5 the complex [\( {\text{AuTU}}_{2}^{ + } \)] undergoes irreversible decomposition followed by deprotonation and formation of a solid phase. From the data of pH in mixed solutions, the equilibrium constants were evaluated: \( {\text{Au}}({\text{SO}}_{3} )_{2}^{3 - } + i{\text{TU}} \rightleftharpoons {\text{Au}}({\text{SO}}_{3} )_{2 - i} {\text{TU}}_{i}^{2i - 3} + i{\text{SO}}_{3}^{2 - } \), log10 β 1 = ?1.2, log10 β 2 = ?3.6. Some aspects of the anodic dissolution of gold in mixed sulfite–thiourea solutions are considered. With the help of the carbonate buffer system the change of the anodic current density j a was studied at high pH; j a (pH) has a maximum at pH 11.6–11.9 for E a = 0.3–0.6 V (vs. NHE). At pH > 12.0, the j a values decrease sharply. Possible mechanisms of anodic gold dissolution, as well as the role of sulfite, are discussed.  相似文献   

20.
The chemical and electrochemical properties of technetium metal were studied in 1–6 M HX and in 1 M NaX (pH 1 and 2.5), X = Cl, NO3. The chemical dissolution rates of Tc metal were higher in HNO3 than in HCl (i.e. 8.63 × 10?5 mol cm?2 h?1 in 6 M HNO3 versus 2.05 × 10?9 mol cm?2 h?1 in 6 M HCl). The electrochemical dissolution rates in HNO3 and HCl were similar and mainly depended on the electrochemical potential and the acid concentration. The optimum dissolution of Tc metal was obtained in 1 M HNO3 at 1 V/AgAgCl (1.70 × 10?3 mol cm?2 h?1). The dissolution potentials of Tc metal in nitric acid were in the range of 0.596–0.832 V/AgAgCl. Comparison of Tc behavior with Mo and Ru indicated that in HNO3, the dissolution rate followed the order: Mo > Tc > Ru, and for dissolution potential the order: E diss(Ru) > E diss(Tc) > E diss(Mo). The corrosion products of Tc metal were analyzed in HCl solution by UV–Visible spectroscopy and showed the presence of TcO4 ?. The surface of the electrode was characterized by microscopic techniques; it indicated that Tc metal preferentially corroded at the scratches formed during the polishing and no oxide layer was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号