首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N,N-dimethylbiguanide (HDMBG) complexes [Cu2(HDMBG)2Cl4] (1) and respectively [Cu(HDMBG)2]Cl2·2H2O (2) exhibit in vitro antimicrobial activity. The complexes were characterised by IR, electronic as well as EPR spectra. The IR spectra of complexes show the pattern of N,N-dimethylbiguanide coordinated as chelate. The electronic and EPR data are in agreement with a square pyramidal stereochemistry for (1) and a square planar one for (2). The in vitro qualitative and quantitative antimicrobial activity assays showed that the complexes exhibited variable antimicrobial activity against Gram-negative strains (Escherichia coli, Klebsiella spp. and Enterobacter sp.) isolated from the hospital environment. The thermal analysis has evidenced the thermal intervals of stability and also the thermodynamic effects that accompany them. The thermal behaviour in nitrogen is complex according to TG and DTA curves including melting, dehydration as well as compounds decomposition.  相似文献   

2.
Seven new bi‐ and polyhomonuclear transition metal complexes with three polyhydroxlated bisazodianil ligands were synthesized and characterized. The ligands were derived from condensation of 6‐(5‐formyl‐2‐hydroxyphenylazo)‐2,4‐dihydroxypyrimidine with aliphatic diamines (H8L1, H8L2 and H6L3). The data of elemental and thermal analyses, molar conductance measurement, IR, electronic and ESR spectra as well as magnetic moment measurements support the formation of [L1Co7Cl6(H2O)10]·22H2O ( 1 ), [H2L2Mn6Cl6(H2O)8]·3H2O·2EtOH ( 3 ), [L2Co8Cl8(H2O)12]·24H2O ( 4 ), [H4L3Co2Cl2(H2O)2]·8H2O·2EtOH ( 6 ) with a tetrahedral geometry and [H2L1Ni5Cl4(H2O)16]·19H2O·EtOH ( 2 ), [L2Ni8Cl8(H2O)28]·8H2O·EtOH ( 5 ) with an octahedral geometry while [H6L3Cu3(H2O)7]Cl3·10H2O ( 7 ) has a distorted tetrahedral arrangement. The mode of bonding between the metal ions and the ligand molecules is determined and the metal‐metal interaction was studied. The activation thermo‐kinetic parameters for the thermal decomposition steps of the complexes E*, ΔH*, ΔS*, and ΔG* were calculated.  相似文献   

3.
The present work describes the preparation and characterization of some metal ion complexes derived from 4-formylpyridine-4 N-(2-pyridyl)thiosemicarbazone (HFPTS). The complexes have the formula; [Cd(HFPTS)2H2O]Cl2, [CoCl2(HPTS)]·H2O, [Cu2Cl4(HPTS)]·H2O, [Fe (HPTS)2Cl2]Cl·3H2O, [Hg(HPTS)Cl2]·4H2O, [Mn(HPTS)Cl2]·5H2O, [Ni(HPTS)Cl2]·2H2O, [UO2(FPTS)2(H2O)]·3H2O. The complexes were characterized by elemental analysis, spectral (IR, 1H-NMR and UV–Vis), thermal and magnetic moment measurements. The neutral bidentate coordination mode is major for the most investigated complexes. A mononegative bidentate for UO2(II), and neutral tridentate for Cu(II). The tetrahedral arrangement is proposed for most investigated complexes. The biological investigation displays the toxic activity of Hg(II) and UO2(II) complexes, whereas the ligand displays the lowest inhibition activity toward the most investigated microorganisms.  相似文献   

4.
Three novel Zn(II) complexes,[Zn4L1Cl4]-3H2O(1),[Zn4L2Cl4]-2DMF(2) and[Zn4L3Cl4]H2O(3),have been synthesized and structurally characterized.In these complexes,interesting 32-membered dodecadentate macrocyclic ligands were generated in situ by ’2 + 2’ type condensation reactions between a tetraamine and various dialdehydes.All the complexes are isostructurally tetranuclear Zn(Ⅱ) complexes,containing endogenous alkoxo and phenoxo bridges.Applications of the macrocyclic ligands as Zn2+ sensors have been investigated.Take H4L1 for example,it exhibits a 4-fold fluorescence enhancement upon the addition of 2 equiv.of Zn2+ in MeOH.  相似文献   

5.
Naphthaldimines containing N2O2 donor centers react with platinum(II) and (IV) chlorides to give two types of complexes depending on the valence of the platinum ion. For [Pt(II)], the ligand is neutral, [(H2L1)PtCl2]·3H2O (1) and [(H2L3)2Pt2Cl4]·5H2O (3), or monobasic [(HL2)2Pt2Cl2]·2H2O (2) and [(HL4)2Pt]·2H2O (4). These complexes are all diamagnetic having square-planar geometry. For [Pt(IV)], the ligand is dibasic, [(L1)Pt2Cl4(OH)2]·2H2O (5), [(L2)Pt3Cl10]·3H2O (6), [(L3)Pt2Cl4(OH)2]·C2H5OH (7) and [(L4)Pt2Cl6]·H2O (8). The Pt(IV) complexes are diamagnetic and exhibit octahedral configuration around the platinum ion. The complexes were characterized by elemental analysis, UV-Vis and IR spectra, electrical conductivity and thermal analyses (DTA and TGA). The molar conductances in DMF solutions indicate that the complexes are non-ionic. The complexes were tested for their catalytic activities towards cathodic reduction of oxygen.  相似文献   

6.

Two new co-ordination compounds of PdII with 1-vinylimidazole of the formulae [PdL4]Cl2·3H2O and trans-[PdL2Cl2], where L is a 1-vinylimidazole molecule, have been obtained. The compounds were characterised by spectroscopic, molar conductivity, thermogravimetric and magnetochemical measurements. Single crystal X-ray structure analyses of the complexes were also carried out. The compounds are diamagnetic with square-planar coordinatination around the palladium(II) ions. Other physico-chemical properties of the both complexes are compatible with their structures.  相似文献   

7.
Four CuII and CoII complexes–[Cu(L1)Cl2(H2O)]3/2H2O · 1/2EtOH, [Cu(L1)2Cl2]6H2O, [Co(L1)Cl2]3H2O · EtOH, and [Co2(L1)(H2O)Cl4]1.5H2O · EtOH (L1 = 2,4,6-tri(2-pyridyl)-1,3,5-triazine; TPT)–were synthesized by conventional chemical method and used to synthesize another four metal complexes–[Cu(L1)I2(H2O)]6H2O, [Cu(L1)2I2]6H2O, [Co(L1)I(H2O)2]I · 2H2O, and [Co2(L1)I4(H2O)3]–using tribochemical reaction, by grinding it with KI. Substitution of chloride by iodide occurred, but no reduction for CuII or oxidation of CoII. Oxidation of CoII to CoIII complexes was only observed on the dissolution of CoII complexes in d6-DMSO in air while warming. The isolated solid complexes (CuII and CoII) have been characterized by elemental analyses, conductivities, spectral (IR, UV-Vis, 1H-NMR), thermal measurements (TGA), and magnetic measurements. The values of molar conductivities suggest non-electrolytes in DMF. The metal complexes are paramagnetic. IR spectra indicate that TPT is tridentate coordinating via the two pyridyl nitrogens and one triazine nitrogen forming two five-membered rings around the metal in M : L complexes and bidentate via one triazine nitrogen and one pyridyl nitrogen in ML2 complexes. In binuclear complexes, L is tridentate toward one CoII and bidentate toward the second CoII in [Co2(L1)Cl4]2.5H2O · EtOH and [Co2(L1)I4(H2O)3]. Electronic spectra and magnetic measurements suggest a distorted-octahedral around CuII and high-spin octahedral and square-pyramidal geometry around CoII.  相似文献   

8.
The chiral complexes [PdL1Cl2] (I) and [PdL2Cl2] (II) (where L1 and L2 are hydroxypyrazolylquinoline and pyrazolylquinoline, respectively, based on the monoterpenoid (+)-3-carene) were obtained and examined using X-ray diffraction. The crystal structures of complexes I and II are built from mononuclear acentric molecules. The Pd2+ ions coordinate two N atoms of the chelating bidentate ligand L1 or L2 and two Cl atoms. The coordination polyhedron Cl2N2 is a square distorted in a tetrahedral manner. In structure I, adjacent molecules are linked by intermolecular contacts and hydrogen bonds Cl···H-O, which gives rise to chains aligned with the axis x. In structure II, contacts that are substantially shorter than the van der Waals interactions were not detected.  相似文献   

9.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

10.
The reactions of 3,10‐C‐meso‐3,5,7,7,10,12,14,14‐octamethyl‐1,4,8,11‐tetraazacyclotetradecadiene, L1, and two isomers (LB and LC, differing in the orientation of methyl groups on the chiral carbon atoms) of its reduced form with PdCl2 and K2[Pd(SCN)4], produce square‐planar tetrachloro‐ and tetrathiocyano‐palladium(II) complexes of general formulae [PdL′][PdCl4] and [PdL′][Pd(SCN)4] (L′ = L1, LB and LC), respectively. By contrast, the third ane isomer, LA, upon reaction with the same reagents, PdCl2 and K2[Pd(SCN)4], formed octahedral tetrachloro‐ and tetrathiocyanato‐palladium(IV) complexes [PdLACl2]Cl2 and [PdLA(SCN)2](SCN)2, respectively. The [PdL′][PdCl4] and [PdLACl2]Cl2 complexes undergo substitution reactions with KSCN to form square‐planar and octahedral tetrathiocyanato complexes [PdL′][Pd(SCN)4] and [PdLA(SCN)2](SCN)2, respectively. All complexes have been characterized on the basis of analytical, spectroscopic, conductometric and magnetochemical data. The anti‐fungal and anti‐bacterial activities of these complexes have been studied against some phytopathogenic fungi and bacteria. The crystal structure of [PdL1][Pd(SCN)4] has been confirmed by X‐ray crystallography and shows with square‐planar PdN4 and PdS4 geometries [monoclinic, space group C2/c, a = 17.884(3) Å, b = 14.734(2) Å, c = 11.4313(18) Å, β = 104.054(5)° ]. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
N-heterocyclic carbene ligands with picolyl (L1H2Br2, L3H2Br2) and benzyl (L2H2Br2, L4H2Br2) linked biphenyl backbone were synthesized and characterized. Their palladium(II) complexes [PdL1]Br2 ( 1 ), [PdL2Br2] ( 2 ), [PdL3]Br2 ( 3 ), and [PdL4Br2] ( 4 ) were synthesized by direct method using Pd(OAc)2. All complexes ( 1 – 4 ) were characterized by CHN analysis, electrospray ionization-MS, nuclear magnetic resonance, and single-crystal X-ray diffraction. Molecular structures confirm the distorted square planar geometry around the Pd(II) center. All of them showed good catalytic activity in acylative Suzuki cross coupling of phenyl boronic acid with benzoyl chloride to afford benzophenone in good yields.  相似文献   

12.

Background

Hydrazones and their metal complexes were heavily studied due to their pharmacological applications such as antimicrobial, anticonvulsant analgesic, anti-inflammatory and anti-cancer agents. This work aims to synthesize and characterize novel complexes of VO2+, Co2+, Ni2+, Cu2+, Zn2+, Zr4+and Pd2+ ions with oxalo bis(2,3-butanedione-hydrazone). Single crystals of the ligand have been grown and analyzed.

Results

Oxalo bis(2,3-butanedionehydrazone) [OBH] has a monoclinic crystal with P 1 21/n 1 space group. The VO2+, Co2+, Ni2+, Cu2+, Zn2+, Zr4+ and Pd2+ complexes have the formulas: [VO(OBH–H)2]·H2O, [Co(OBH)2Cl]Cl·½EtOH, [Ni2(OBH)Cl4]·H2O·EtOH, [Cu(OBH)2Cl2]·2H2O, [Zn(OBH–H)2], [Zr(OBH)Cl4]·2H2O, and [Pd2(OBH)(H2O)2Cl4]·2H2O. All complexes are nonelectrolytes except [Co(OBH)2Cl]Cl·½EtOH. OBH ligates as: neutral tetradentate (NNOO) in the Ni2+ and Pd2+ complexes; neutral bidentate (OO) in [Co(OBH)2Cl]Cl·½EtOH, [Zr(OBH)Cl4]·2H2O and [Cu(OBH)2Cl2]·2H2O and monobasic bidentate (OO) in the Zn2+ and VO2+ complexes. The NMR (1H and 13C) spectra support these data. The results proved a tetrahedral for the Zn2+ complex; square-planar for Pd2+; mixed stereochemistry for Ni2+; square-pyramid for Co2+ and VO2+ and octahedral for Cu2+ and Zr4+ complexes. The TGA revealed the outer and inner solvents as well as the residual part. The molecular modeling of [Ni2(OBH)Cl4]·H2O·EtOH and [Co(OBH)2Cl]Cl·½EtOH are drawn and their molecular parameters proved that the presence of two metals stabilized the complex more than the mono metal. The complexes have variable activities against some bacteria and fungi. [Zr(OBH)Cl4]·2H2O has the highest activity. [Co(OBH)2Cl]Cl·½EtOH has more activity against Fusarium.

Conclusion

Oxalo bis(2,3-butanedionehydrazone) structure was proved by X-ray crystallography. It coordinates with some transition metal ions as neutral bidentate; mononegative bidentate and neutral tetradentate. The complexes have tetrahedral, square-planar and/or octahedral structures. The VO2+ and Co2+ complexes have square-pyramid structure. [Cu(OBH)2Cl2]·2H2O and [Ni2(OBH)Cl4]·H2O·EtOH decomposed to their oxides while [VO(OBH–H)2]·H2O to vanadium. The energies obtained from molecular modeling calculation for [Ni2(OBH)Cl4]·H2O·EtOH are less than those for [Co(OBH)2Cl]Cl·½EtOH indicating the two metals stabilized the complex more than mono metal. The Co(II) complex is polar molecule while the Ni(II) is non-polar.

Graphical abstract

  相似文献   

13.
New VO2+, Mn2+, Co2+, Ni2+ Cu2+ and Zn2+ complexes of 2,5-hexanedione bis(isonicotinylhydrazone) [H2L] have been synthesized and characterized. The analyses confirmed the formulae: [VO(L)]·H2O, [Mn2(H2L)Cl2(H2O)6]Cl2, [Co(L)(H2O)2]·2H2O, [Ni(HL)(OAc)]·H2O, [Cu(L)(H2O)2]·2H2O, [Cu(L)]·2H2O and [Zn(L)(H2O)2]. The formulae of [Ni(HL)(OAc)]·H2O, [Zn(L)(H2O)2] and [Mn2(H2L)Cl2(H2O)6]Cl2, are supported by mass spectra. The molecular modeling of H2L is drawn and showed intramolecular hydrogen bonding. The ligand releases two protons during reaction from the two amide groups (NHCO) and behaves as a binegative tetradentate (N2O2); good evidence comes from the 1H NMR spectrum of [Zn(L)(H2O)2]. The ligand has a buffering range 10–12 and pK's of 4.62, 7.78 and 9.45. The magnetic moments and electronic spectra of all complexes provide a square-planar for [Cu(L)]·2H2O, square-pyramidal for [VO(L)]·H2O and octahedral for the rest. The ESR spectra support the mononuclear geometry for [VO(L)]·H2O and [Cu(L)(H2O)2]·2H2O. The thermal decomposition of the complexes revealed the outer and inner solvents where the end product in most cases is metal oxide.  相似文献   

14.
15.
Three new Schiff base ligands N-(3-formyl-5-methylsalicylidene)-2-aminoethanol (H2L1), N-(3-hydroxylmethyl-5-methylsalicylidene)-2-aminoethanol (H3L2), 2,6-bis(o-carboxyphenyliminomethene)-4-methylphenol (H3L3) and their binuclear ZnII complexes [Zn2(HL1)2]Cl2 · 2H2O (ZnHL1), [Zn2(H2L2)2]Cl2 · H2O (ZnH2L2) and [Zn2(HL3)Cl2] · H2O (ZnHL3) were synthesized and characterized by 1H-NMR, elemental analysis, IR and molar conductivity. The results suggest, in every case, two Zn2+ ions were bridged by phenolic OH group oxygen, forming a binuclear complex. The binding properties of these complexes to calf thymus DNA (ct-DNA) were investigated. Absorption and fluorescence spectra are together suggestive that both ZnHL1 and ZnHL3 interact with ct-DNA through intercalative mode, while ZnH2L2 interact with ct-DNA by non-intercalative interaction. Moreover, ZnHL3 can bind to ct-DNA more strongly than ZnHL1. These complexes also exhibited good scavenging activity on the hydroxyl radical (•OH), which are better than those of their corresponding ligands.  相似文献   

16.
Synthesis, spectroscopic characterization, theoretical and antimicrobial studies of Ca(II), Fe(III), Pd(II), and Au(III) complexes of amoxicillin (amox) antibiotic drug are presented in the current paper. Structure of 1: 1 (metal: amox) complexes were elucidated on the basis of elemental analyses, and IR, Raman, 1H NMR, and electronic spectral data. According to molar conductance measurements the complexes had electrolyte nature. Amoxicillin reacted with metal ions as a tridentate ligand coordinated with metal ions via–NH2,–NH, and β-lactam carbonyl groups. The complexes were formulated as [Ca(amox-Na)(H2O)]·Cl2·4H2O (1), [Fe(amox-Na)(H2O)3]·Cl3·3H2O (2), [Pd(amox-Na)(H2O)]·Cl2 (3), and [Au(amox-Na)(H2O)]·Cl3 (4). Kinetic thermodynamic parameters (E*, ΔS*, ΔH*, and ΔG*) were calculated based on the Coats–Redfern and Horowitz–Metzger methods using thermo gravimetric curves of TG and DTG. Nanosize particles of amoxicillin complexes have been studied by XRD, SEM, and TEM methods. Theoretical studies of the synthesized complexes have been performed.  相似文献   

17.
New complexes of type [Cu(HTBG)2]Cl2 (1), [Cu(TBG)2]·3H2O (2) and [CuL]·nH2O (3) L:L1, n = 2 and (4) L:L2, n = 1 (HTBG: 2-tolylbiguanide, L1 and L2: ligands resulted from 2-tolylbiguanide, ammonia/hydrazine and formaldehyde one pot condensation) were synthesised and characterised. The features of complexes have been assigned from microanalytical, IR and UV–Vis data. Redox behaviour was established by cyclic voltammetry. The in vitro qualitative and quantitative antimicrobial activity assays showed that the complexes exhibited variable antimicrobial activity against Gram-negative and Gram-positive strains isolated from the hospital environment. The thermal analyses have evidenced the thermal intervals of stability and also the thermodynamic effects that accompany them. After water elimination, complexes have a similar thermal behaviour. Processes as water elimination, melting, chloride anion removal as well as oxidative degradation of the organic ligands were observed. The final product of decomposition was copper (II) oxide.  相似文献   

18.
A series of metal complexes of Schiff bases derived from condensation of sulfa-guanidine with 1-benzoylacetone (H2L1), 2-hydroxybenzophenol (H2L2), dibenzoylmethane (H2L3), 5-methylisatine (H2L4), and 1-methylisatine (H2L5) have been synthesized. The complexes are characterized by elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, 1H NMR, and ESR spectra, as well as thermogravimetric analysis. The low molar conductance values indicate the complexes are nonelectrolytes. IR and 1H NMR spectra show that H2L1–H2L5 are coordinated to metal ions by two bidentate centers. Mn(II), Co(II), Ni(II), and Cu(II) complexes display paramagnetic behavior, whereas the Zn(II)-complex was diamagnetic. All studies confirm the formation of an octahedral geometry for [Cu2L1(AcO)2(H2O)6] · 3H2O (1), [Mn2L4(AcO)2(H2O)6] · 2H2O (6), [Ni2L4(AcO)2(H2O)6] · 2H2O (8), a tetrahedral geometry for [Cu2L2(AcO)2(H2O)2] (2), [Cu2(L4)2] (4), [Co2(L4)2] · 2H2O (7) and [ZnHL4(AcO)(H2O)] · 2H2O (9) and a trigonal bipyramid geometry for [Cu2L3(AcO)2(H2O)4] (3) and [Cu2HL5(AcO)3(H2O)3] · H2O (5). H2L4 was most effective on Gram negative, Gram positive bacteria, and fungi (diameters inhibition zone ranged between 10.5–27.5 mm) after 24 and 48 h, respectively. Complex 8 showed moderate antimicrobial activity. Its minimum inhibitory concentration (MIC) against Escherichia coli, Bacillus subtilis, Candida albicans and Aspargllus flavas was 20 mg L–1. The compound proved to be of moderate toxicity and its LD50 was 20 mg L–1.  相似文献   

19.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

20.
Sandwich coordination complexes, [LnIII(H3L)2]X3?solvents, of Tb(III), Eu(III), Dy(III), Ho(III) and Er(III) were prepared with two new zwitterionic ester-substituted tripodal amine ligands, tris((2-hydroxy-5-n-butyl benzoate)aminoethyl)-amine (H3L1) and tris((2-hydroxy-5-methyl benzoate)aminoethyl)-amine (H3L2). These ligands were synthesised by condensation of the appropriately substituted salicylaldehyde with tris(2-aminoethyl)amine (tren) followed by in situ reduction of the tris-imine to tris-amine. Subsequent 2:1 reaction with lanthanide(III) ions yields [LnIII(H3L)2]X3?solvents (L = L1, L2; X = Cl?, NO3?; solvents = MeOH or H2O). All complexes were characterised by microanalysis, infrared spectroscopy, high resolution mass spectrometry and solid-state photoluminescence measurements. The crystal structures of [TbIII(H3L1)2]Cl3·6MeOH, [Dy(H3L1)2]Cl3·6MeOH, [EuIII(H3L1)2]Cl3·6MeOH and [TbIII(H3L1)2](NO3)3 reveal high-crystallographic ?3 symmetry at the O6-coordinated octahedral lanthanide(III) ions and that the tripodal ligands are bound in zwitterionic form: the protons from the phenolic oxygens have migrated to the amino nitrogens. Photoluminescence measurements indicate various degrees of energy transfer of the ligand chromophore to the lanthanide ions, as both ligand and lanthanide emission features are observed. Despite the high-crystallographic symmetry and the likely small transverse magnetic anisotropy of the complexes, no evidence of slow relaxation of the magnetisation, characteristic of a single-molecule magnet, was observed for [TbIII(H3L1)2]Cl3·MeOH·3H2O, [DyIII(H3L1)2]Cl3·6H2O, [HoIII(H3L1)2](NO3)3·2H2O, [ErIII(H3L1)2]·H2O and [TbIII(H3L1)2](NO3)3 down to 2.0 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号